ﻻ يوجد ملخص باللغة العربية
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the REST FRAME X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of memoryof the prompt gamma-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt gamma-ray parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. However and more importantly, we report on the existence of a universal 3-parameter scaling that links the X-ray and the gamma-ray energy to the prompt spectral peak energy of BOTH long and short GRBs: E_{X,iso}propto E_{gamma,iso}^{1.00pm 0.06}/E_{pk}^{0.60pm 0.10}.
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is
With its rapid response, {it Swift} has revealed plenty of unexpected properties of gamma-ray bursts (GRBs). With an abundance of observations, our current understanding is only limited by complexity of early X-ray light curves. In this work, based o
The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow qu
We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t