ﻻ يوجد ملخص باللغة العربية
The peaks of 30 optical afterglows and 14 X-ray light-curves display a good anticorrelation of the peak flux with the peak epoch: F_p ~ t_p^{-2.0} in the optical, F_p ~ t_p^{-1.6} in the X-ray, the distributions of the peak epochs being consistent with each other. We investigate the ability of two forward-shock models for afterglow light-curve peaks -- an observer location outside the initial jet aperture and the onset of the forward-shock deceleration -- to account for those peak correlations. For both models, the slope of the F_p - t_p relation depends only on the slope of the afterglow spectrum. We find that only a conical jet seen off-aperture and interacting with a wind-like medium can account for both the X-ray peak relation, given the average X-ray spectral slope beta_x = 1.0, and for the larger slope of the optical peak relation. However, any conclusion about the origin of the peak flux - peak epoch correlation is, at best, tentative, because the current sample of X-ray peaks is too small to allow a reliable measurement of the F_p - t_p relation slope and because more than one mechanism and/or one afterglow parameter may be driving that correlation.
During the pre-Swift era, a clustering of light curves was observed in the X-ray, optical and infrared afterglow of gamma-ray bursts. We used a sample of 254 GRB X-ray afterglows to check this fact in the Swift era. We corrected fluxes for distance,
We investigate the clustering of afterglow light curves observed at X-ray and optical wavelengths. We have constructed a sample of 61 bursts with known dis tance and X-ray afterglow. This sample includes bursts observed by BeppoSAX, XMM-Newton, Chand
We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest level of comple
Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is