ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation $gamma$ rays

119   0   0.0 ( 0 )
 نشر من قبل Alexander Himmel
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation $gamma$-rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to $3.01 times 10^{20}$ protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the $4-30$ MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is $1.55 times 10^{-38}$ cm$^2$ with a 68% confidence interval of $(1.22, 2.20) times 10^{-38}$ cm$^2$ at a median neutrino energy of 630 MeV, compared with the theoretical prediction of $2.01 times 10^{-38}$ cm$^2$.

قيم البحث

اقرأ أيضاً

123 - K. Abe , R. Akutsu , A. Ali 2019
Neutrino- and antineutrino-oxygen neutral-current quasielastic-like interactions are measured at Super-Kamiokande using nuclear de-excitation $gamma$-rays to identify signal-like interactions in data from a $14.94 (16.35)times 10^{20}$ protons-on-ta rget exposure of the T2K neutrino (antineutrino) beam. The measured flux-averaged cross sections on oxygen nuclei are $langle sigma_{ u {rm -NCQE}} rangle = 1.70 pm 0.17 ({rm stat.}) ^{+ {rm 0.51}}_{- {rm 0.38}} ({rm syst.}) times 10^{-38} {rm cm^2/oxygen}$ with a flux-averaged energy of 0.82 GeV and $langle sigma_{bar{ u} {rm -NCQE}} rangle = 0.98 pm 0.16 ({rm stat.}) ^{+ {rm 0.26}}_{- {rm 0.19}} ({rm syst.}) times 10^{-38} {rm cm^2/oxygen}$ with a flux-averaged energy of 0.68 GeV, for neutrinos and antineutrinos, respectively. These results are the most precise to date, and the antineutrino result is the first cross section measurement of this channel. They are compared with various theoretical predictions. The impact on evaluation of backgrounds to searches for supernova relic neutrinos at present and future water Cherenkov detectors is also discussed.
We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH$_2$) as a function of four-momentum transferred squared. It is obtained by measuring the kinematics of recoili ng nucleons with kinetic energy greater than 50~MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, $M_{A}$, that provides a best fit for $M_A= 1.39pm0.11$~GeV. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at $Q^2 = 0$, $Delta s$, is found to be $Delta s=0.08pm0.26$.
Neutral current (NC) interactions of atmospheric neutrinos on oxygen form one of the major backgrounds in the search for supernova relic neutrinos with water-based Cherenkov detectors. The NC channel is dominated by neutrino quasi-elastic (NCQE) scat tering off nucleons inside $^{16}$O nuclei. In this paper we report the first measurement of NCQE cross section using atmospheric neutrinos at Super-Kamiokande (SK). The measurement used 2,778 live days of SK-IV data with a fiducial volume of 22.5 kiloton water. Within the visible energy window of 7.5-29.5 MeV, we observed $117$ events compared to the expected $71.9$ NCQE signal and $53.1$ background events. Weighted by the atmospheric neutrino spectrum from 160 MeV to 10 GeV, the flux averaged NCQE cross section is measured to be $(1.01pm0.17(text{stat.})^{+0.78}_{-0.30}(text{sys.}))times10^{-38}$ cm$^2$.
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section ($dsigma_{bar u N rightarrow bar u N}/dQ^{2}$) on CH$_{2}$ by the MiniBooNE experiment using the largest sample of antineutrino neutral cur rent elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of antineutrino neutral current elastic to antineutrino charged current quasi elastic cross section is also presented.
We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and rever sed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy range $E_{ u} <$ 6GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا