ﻻ يوجد ملخص باللغة العربية
Neutral current (NC) interactions of atmospheric neutrinos on oxygen form one of the major backgrounds in the search for supernova relic neutrinos with water-based Cherenkov detectors. The NC channel is dominated by neutrino quasi-elastic (NCQE) scattering off nucleons inside $^{16}$O nuclei. In this paper we report the first measurement of NCQE cross section using atmospheric neutrinos at Super-Kamiokande (SK). The measurement used 2,778 live days of SK-IV data with a fiducial volume of 22.5 kiloton water. Within the visible energy window of 7.5-29.5 MeV, we observed $117$ events compared to the expected $71.9$ NCQE signal and $53.1$ background events. Weighted by the atmospheric neutrino spectrum from 160 MeV to 10 GeV, the flux averaged NCQE cross section is measured to be $(1.01pm0.17(text{stat.})^{+0.78}_{-0.30}(text{sys.}))times10^{-38}$ cm$^2$.
We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH$_2$) as a function of four-momentum transferred squared. It is obtained by measuring the kinematics of recoili
Using 5,326 days of atmospheric neutrino data, a search for atmospheric tau neutrino appearance has been performed in the Super-Kamiokande experiment. Super-Kamiokande measures the tau normalization to be 1.47$pm$0.32 under the assumption of normal n
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section ($dsigma_{bar u N rightarrow bar u N}/dQ^{2}$) on CH$_{2}$ by the MiniBooNE experiment using the largest sample of antineutrino neutral cur
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos
The largest sample ever recorded of $ umub$ charged-current quasi-elastic (CCQE, $ umub + p to mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $frac{d^{2}sigma}{dT_mu duz}