ﻻ يوجد ملخص باللغة العربية
The doping and strain effects on the electron transport of monolayer MoS_2 are systematically investigated using the first-principles calculations with Boltzmann transport theory. We estimate the mobility has a maximum 275 cm^2/(Vs) in the low doping level under the strain-free condition. The applying a small strain (3%) can improve the maximum mobility to 1150 cm^2/(Vs) and the strain effect is more significant in the high doping level. We demonstrate that the electric resistance mainly due to the electron transition between K and Q valleys scattered by the M momentum phonons. However, the strain can effectively suppress this type of electron-phonon coupling by changing the energy difference between the K and Q valleys. This sensitivity of mobility to the external strain may direct the improving electron transport of MoS_2.
Self-assembled topological structures of post-processed two-dimensional materials exhibit novel physical properties distinct from those of their parent materials. Herein, the critical role of desulphurization on self-assembled topological morphologie
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra
Experimentally synthesized $mathrm{MoSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}) is a piezoelectric semiconductor. Here, we systematically study the large biaxial (isotropic) strain effects (0.90 to 1.10) on electronic str
Applying external strain is an efficient way to manipulate the site preference of dopants in semiconductors, however, the validity of the previous continuum elastic model for the strain influence on the doping forma- tion energy is still under debate
Contrary to the common belief that electron-electron interaction (EEI) should be negligible in s-orbital-based conductors, we demonstrated that the EEI effect could play a significant role on electronic transport leading to the misinterpretation of t