ﻻ يوجد ملخص باللغة العربية
Experimentally synthesized $mathrm{MoSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}) is a piezoelectric semiconductor. Here, we systematically study the large biaxial (isotropic) strain effects (0.90 to 1.10) on electronic structures and transport coefficients of monolayer $mathrm{MoSi_2N_4}$ by density functional theory (DFT). With $a/a_0$ from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum (CBM). Calculated results show that the $mathrm{MoSi_2N_4}$ monolayer is mechanically stable in considered strain range. It is found that the spin-orbital coupling (SOC) effects on Seebeck coefficient depend on the strain. In unstrained $mathrm{MoSi_2N_4}$, the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied, for example 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema (CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type $ZT_e$. Only about 0.96 strain can effectively improve n-type $ZT_e$. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer $mathrm{MoSi_2N_4}$, and can motivate farther experimental exploration.
Graphite-like carbon nitride (g-$mathrm{C_3N_4}$) is considered as a promising candidate for energy materials. In this work, the biaxial strain (-4%-4%) effects on piezoelectric properties of g-$mathrm{C_3N_4}$ monolayer are studied by density functi
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of
Strain engineering in single-layer semiconducting transition metal dichalcogenides aims to tune their bandgap energy and to modify their optoelectronic properties by the application of external strain. In this paper we study transition metal dichalco
Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more eff
The doping and strain effects on the electron transport of monolayer MoS_2 are systematically investigated using the first-principles calculations with Boltzmann transport theory. We estimate the mobility has a maximum 275 cm^2/(Vs) in the low doping