ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory Synthesis of Molecular Hydrogen on Surfaces of Astrophysical Interest

98   0   0.0 ( 0 )
 نشر من قبل Gianfranco Vidali
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first results of experiments to measure the recombination rate of hydrogen on surfaces of astrophysical interest. Our measurements give lower values for the recombination efficiency (sticking probability S x probability of recombination upon H-H encounter $gamma$) than model-based estimates. We propose that our results can be reconciled with average estimates of the recombination rate (1/2 n(H) n(g) v(H)A S $gamma$) from astronomical observations, if the actual surface of an average grain is rougher, and its area bigger, than the one considered in models.



قيم البحث

اقرأ أيضاً

Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained for polycrystalline silicates, demonstrating the importance of grain morphology. Using these barriers we evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H_2 formation in diffuse interstellar clouds.
Recent experimental results about the formation of molecular hydrogen on astrophysically relevant surfaces under conditions close to those encountered in the interstellar medium are analyzed using rate equations. The parameters of the rate equation m odel are fitted to temperature-programmed desorption curves obtained in the laboratory. These parameters are the activation energy barriers for atomic hydrogen diffusion and desorption, the barrier for molecular hydrogen desorption, and the probability of spontaneous desorption of a hydrogen molecule upon recombination. The model is a generalization of the Polanyi-Wigner equation and provides a description of both first and second order kinetic processes within a single model. Using the values of the parameters that fit best the experimental results, the efficiency of hydrogen recombination on olivine and amorphous carbon surfaces is obtained for a range of hydrogen flux and surface temperature pertinent to a wide range of interstellar conditions.
At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier t han hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5 - 25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rate of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. Relative diffusion rates are k_H2Oice > k_sil > k_graph >> k_expected. The implications of an efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature H2 becomes far more abundant than H and the O/H ratio grows, the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.
We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T leq 2 0 MeV$), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the non-degenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by $nn$ and $pp$ bremsstrahlung by a factor of about two in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars and other astrophysical situations.
157 - M.C. van Hemert 2008
Astronomical observations have shown that small carbonaceous molecules can persist in interstellar clouds exposed to intense ultraviolet radiation. Current astrochemical models lack quantitative information on photodissociation rates in order to inte rpret these data. We here present ab initio multi-reference configuration-interaction calculations of the vertical excitation energies, transition dipole moments and oscillator strengths for a number of astrophysically relevant molecules: C3, C4, C2H, l- and c-C3H, l- and c-C3H2, HC3H, l-C4H and l-C5H. Highly excited states up to the 9th root of each symmetry are computed, and several new states with large oscillator strengths are found below the ionization potentials. These data are used to calculate upper limits on photodissociation rates in the unattenuated interstellar radiation field by assuming that all absorptions above the dissociation limit lead to dissociation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا