ﻻ يوجد ملخص باللغة العربية
A new deconvolution algorithm based on orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. As the utilized cost function is a convex function in $R^N$, the corresponding epigraph set is also a convex set in $R^{N+1}$. The deconvolution algorithm starts with an arbitrary initial estimate in $R^{N+1}$. At each step of the iterative algorithm, first deconvolution projections are performed onto the epigraphs, later an orthogonal projection is performed onto one of the constraint sets associated with the cost function in a sequential manner. The method provides globally optimal solutions for total-variation, $ell_1$, $ell_2$, and entropic cost functions.
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to t
We present a set of new instances of the maximum weight independent set problem. These instances are derived from a real-world vehicle routing problem and are challenging to solve in part because of their large size. We present instances with up to 881 thousand nodes and 383 million edges.
In the problem of minimum connected dominating set with routing cost constraint, we are given a graph $G=(V,E)$, and the goal is to find the smallest connected dominating set $D$ of $G$ such that, for any two non-adjacent vertices $u$ and $v$ in $G$,
Non-convex sparse minimization (NSM), or $ell_0$-constrained minimization of convex loss functions, is an important optimization problem that has many machine learning applications. NSM is generally NP-hard, and so to exactly solve NSM is almost impo