ﻻ يوجد ملخص باللغة العربية
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is also a convex set in R^{N+1}. The iterative optimization approach starts with an arbitrary initial estimate in R^{N+1} and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation (TV), filtered variation (FV), L_1, and entropic cost functions. A new denoising algorithm using the TV framework is developed. The new algorithm does not require any of the regularization parameter adjustment. Simulation examples are presented.
Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to t
A new deconvolution algorithm based on orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function are
The Frank-Wolfe method solves smooth constrained convex optimization problems at a generic sublinear rate of $mathcal{O}(1/T)$, and it (or its variants) enjoys accelerated convergence rates for two fundamental classes of constraints: polytopes and st
In this paper, an Entropy functional based online Adaptive Decision Fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several sub-algorit
Given a graph, the shortest-path problem requires finding a sequence of edges with minimum cumulative length that connects a source vertex to a target vertex. We consider a generalization of this classical problem in which the position of each vertex