ترغب بنشر مسار تعليمي؟ اضغط هنا

Best-first Search Algorithm for Non-convex Sparse Minimization

91   0   0.0 ( 0 )
 نشر من قبل Shinsaku Sakaue
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-convex sparse minimization (NSM), or $ell_0$-constrained minimization of convex loss functions, is an important optimization problem that has many machine learning applications. NSM is generally NP-hard, and so to exactly solve NSM is almost impossible in polynomial time. As regards the case of quadratic objective functions, exact algorithms based on quadratic mixed-integer programming (MIP) have been studied, but no existing exact methods can handle more general objective functions including Huber and logistic losses; this is unfortunate since those functions are prevalent in practice. In this paper, we consider NSM with $ell_2$-regularized convex objective functions and develop an algorithm by leveraging the efficiency of best-first search (BFS). Our BFS can compute solutions with objective errors at most $Deltage0$, where $Delta$ is a controllable hyper-parameter that balances the trade-off between the guarantee of objective errors and computation cost. Experiments demonstrate that our BFS is useful for solving moderate-size NSM instances with non-quadratic objectives and that BFS is also faster than the MIP-based method when applied to quadratic objectives.

قيم البحث

اقرأ أيضاً

Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant on the well-known Christofides algorithm for the TSP, called the Best-of-Many Christofides algorithm. The algorithm involves sampling a spanni ng tree from the solution the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides algorithm. In our experiments, all of the implemented methods perform significantly better than the Christofides algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well.
Energy minimization has been an intensely studied core problem in computer vision. With growing image sizes (2D and 3D), it is now highly desirable to run energy minimization algorithms in parallel. But many existing algorithms, in particular, some e fficient combinatorial algorithms, are difficult to par-allelize. By exploiting results from convex and submodular theory, we reformulate the quadratic energy minimization problem as a total variation denoising problem, which, when viewed geometrically, enables the use of projection and reflection based convex methods. The resulting min-cut algorithm (and code) is conceptually very simple, and solves a sequence of TV denoising problems. We perform an extensive empirical evaluation comparing state-of-the-art combinatorial algorithms and convex optimization techniques. On small problems the iterative convex methods match the combinatorial max-flow algorithms, while on larger problems they offer other flexibility and important gains: (a) their memory footprint is small; (b) their straightforward parallelizability fits multi-core platforms; (c) they can easily be warm-started; and (d) they quickly reach approximately good solutions, thereby enabling faster inexact solutions. A key consequence of our approach based on submodularity and convexity is that it is allows to combine any arbitrary combinatorial or convex methods as subroutines, which allows one to obtain hybrid combinatorial and convex optimization algorithms that benefit from the strengths of both.
We study the first-order convex optimization problem, where we have black-box access to a (not necessarily smooth) function $f:mathbb{R}^n to mathbb{R}$ and its (sub)gradient. Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum. If $f$ is $G$-Lipschitz, then the classic gradient descent algorithm solves this problem with $O((GR/epsilon)^{2})$ queries. Importantly, the number of queries is independent of the dimension $n$ and gradient descent is optimal in this regard: No deterministic or randomized algorithm can achieve better complexity that is still independent of the dimension $n$. In this paper we reprove the randomized lower bound of $Omega((GR/epsilon)^{2})$ using a simpler argument than previous lower bounds. We then show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries. We then show an improved lower bound against quantum algorithms using a different set of instances and establish our main result that in general even quantum algorithms need $Omega((GR/epsilon)^2)$ queries to solve the problem. Hence there is no quantum speedup over gradient descent for black-box first-order convex optimization without further assumptions on the function family.
We propose two novel conditional gradient-based methods for solving structured stochastic convex optimization problems with a large number of linear constraints. Instances of this template naturally arise from SDP-relaxations of combinatorial problem s, which involve a number of constraints that is polynomial in the problem dimension. The most important feature of our framework is that only a subset of the constraints is processed at each iteration, thus gaining a computational advantage over prior works that require full passes. Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees. Preliminary numerical experiments are provided for illustrating the practical performance of the methods.
Optimization algorithms for solving nonconvex inverse problem have attracted significant interests recently. However, existing methods require the nonconvex regularization to be smooth or simple to ensure convergence. In this paper, we propose a nove l gradient descent type algorithm, by leveraging the idea of residual learning and Nesterovs smoothing technique, to solve inverse problems consisting of general nonconvex and nonsmooth regularization with provable convergence. Moreover, we develop a neural network architecture intimating this algorithm to learn the nonlinear sparsity transformation adaptively from training data, which also inherits the convergence to accommodate the general nonconvex structure of this learned transformation. Numerical results demonstrate that the proposed network outperforms the state-of-the-art methods on a variety of different image reconstruction problems in terms of efficiency and accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا