ﻻ يوجد ملخص باللغة العربية
A small blowout jet was observed at the boundary of the south polar coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising from one footpoint of a compact, bipolar bright point. Magnetograms from the Helioseismic Magnetic Imager (HMI) on board SDO showed that the jet was triggered by the cancelation of a parasitic positive polarity feature near the negative pole of the bright point. The jet emission was present for 25 mins and it extended 30 Mm from the bright point. Spectra from the EUV Imaging Spectrometer on board Hinode yielded a temperature and density of 1.6 MK and 0.9-1.7 x 10^8 cm^-3 for the ejected plasma. Line-of-sight velocities reached up to 250 km/s and were found to increase with height, suggesting plasma acceleration within the body of the jet. Evidence was found for twisting motions within the jet based on variations of the LOS velocities across the jet width. The derived angular speed was in the range 9-12 x 10^-3 rad s^-1, consistent with previous measurements from jets. The density of the bright point was 7.6 x 10^8 cm^-3, and the peak of the bright points emission measure occurred at 1.3 MK, with no plasma above 3 MK.
A blowout jet occurred within the south coronal hole on 9 February 2011 at 09:00 UT and was observed by the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory, and the EUV Imaging Spec
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using
Using the multi-wavelength data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft, we study a jet occurred in coronal hole near the northern pole of the Sun. The jet presented distinct helical upward
We report on observations of a solar prominence obtained on 26 April 2007 using the Extreme Ultraviolet Imaging Spectrometer on Hinode. Several regions within the prominence are identified for further analysis. Selected profiles for lines with format
Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on July 2nd, 2012. If it had been observed at only moderate resolution, the two phases and their p