ﻻ يوجد ملخص باللغة العربية
Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on July 2nd, 2012. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux which decrease in size during the occurrence of the two phases. Based on these observations, we suggest the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite polarity fragment between them.
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using
A small blowout jet was observed at the boundary of the south polar coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STER
A blowout jet occurred within the south coronal hole on 9 February 2011 at 09:00 UT and was observed by the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory, and the EUV Imaging Spec
A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously st