ﻻ يوجد ملخص باللغة العربية
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large- scale magnetic topology of the CH being important to define the eventual propagating direction of this particular jet-CME eruption.
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection
Coronal jets are ubiquitous in active regions (ARs) and coronal holes. In this paper, we study a coronal jet related to a C3.4 circular-ribbon flare in active region 12434 on 2015 October 16. Two minifilaments were located under a 3D fan-spine struct
The Sun is an active star that can launch large eruptions of magnetised plasma into the heliosphere, called coronal mass ejections (CMEs). These ejections can drive shocks that accelerate particles to high energies, often resulting in radio emission
A small blowout jet was observed at the boundary of the south polar coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising
We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow di