ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic Bessel-like beam formation by an axisymmetric grating

307   0   0.0 ( 0 )
 نشر من قبل Vicent Romero-Garc\\'ia
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Bessel-like beam formation of acoustic waves by means of an axisymmetric grating of rigid tori. The results show that the generated beam pattern is similar to that of Bessel beams, characterized by elongated non-diffracting focal spots. A multiple foci structure is observed, due to the finite size of the lens. The dependence of the focal distance on the frequency is also discussed, on the basis of an extended grating theory. Experimental validation of acoustic Bessel-like beam formation is also reported for sound waves. The results can be generalized to wave beams of different nature, as optical or matter waves.

قيم البحث

اقرأ أيضاً

Current-induced motion of non-axisymmetric skyrmions within angular phases of polar helimagnetis with the easy plane anisotropy is studied by micromagnetic simulations.Such non-axisymmetric skyrmions consist of a circular core and a crescent-shaped d omain-wall region formed with respect to the tilted surrounding state. A current-driven motion of non-axisymmetric skyrmions exhibits two distinct time regimes: initially the skyrmions rotate towards the current flow direction and subsequently move along the current with the skyrmionic crescent first. According to the Thiele equation, the asymmetric distribution of the topological charge and the dissipative force tensor play an important role for giving the different velocities for the circular and the crescent-shaped constituent parts of the skyrmion what underlies such a shuttlecock-like movement. Moreover, the current-velocity relation depends on the tilt angle of the surrounding angular phase what makes in particular the transverse velocity of skyrmions sensitive to their field-driven configurational transformation.
Metasurfaces, the ultrathin media with extraordinary wavefront modulation ability, have shown versatile potential in manipulating waves. However, existing acoustic metasurfaces are limited by their narrow-band frequency-dependent capability, which se verely hinders their real-world applications that usually require customized dispersion. To address this bottlenecking challenge, we report ultra-broadband achromatic metasurfaces that are capable of delivering arbitrary and frequency-independent wave properties by bottom-up topology optimization. We successively demonstrate three ultra-broadband functionalities, including acoustic beam steering, focusing and levitation, featuring record-breaking relative bandwidths of 93.3%, 120% and 118.9%, respectively. All metasurface elements show novel asymmetric geometries containing multiple scatters, curved air channels and local cavities. Moreover, we reveal that the inversely designed metasurfaces can support integrated internal resonances, bi-anisotropy and multiple scattering, which collectively form the mechanism underpinning the ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband high-efficiency achromatic functional devices on demand, with promising extension to the optical and elastic achromatic metamaterials.
47 - N.Horiuchi , T.Ochiai , J.Inoue 2006
We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultra-relativistic electro n beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultra-relativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.
Multiexcitons in monolayer WSe2 exhibit a suite of optoelectronic phenomena that are unique to those of their single exciton constituents. Here, photoluminescence action spectroscopy shows that multiexciton formation is enhanced with increasing optic al excitation energy. This enhancement is attributed to the multiexciton formation processes from an electron-hole plasma and results in over 300% more multiexciton emission than at lower excitation energies at 4 K. The energetic onset of the enhancement coincides with the quasiparticle bandgap, corroborating the role of the electron-hole plasma, and the enhancement diminishes with increasing temperature. The results reveal that the strong interactions responsible for ultrafast exciton formation also affect multiexciton phenomena, and both multiexciton and single exciton states play significant roles in plasma thermalization in 2D semiconductors.
591 - T.W. Zhang , Z.W. Mao , Z.B. Gu 2017
Transition metal oxide heterostructures and interfaces host a variety of exciting quantum phases and can be grown with atomic-scale precision by utilising the intensity oscillations of $in$ $situ$ reflection high-energy electron diffraction (RHEED). However, establishing a stable oscillation pattern in the growth calibration of complex oxides films is very challenging and time consuming. Here, we develop a substantially more efficient and reliable growth calibration method for complex oxide films using molecular beam epitaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا