ترغب بنشر مسار تعليمي؟ اضغط هنا

Achromatic metasurfaces with inversely customized dispersion for ultra-broadband acoustic beam engineering

95   0   0.0 ( 0 )
 نشر من قبل Li Cheng Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metasurfaces, the ultrathin media with extraordinary wavefront modulation ability, have shown versatile potential in manipulating waves. However, existing acoustic metasurfaces are limited by their narrow-band frequency-dependent capability, which severely hinders their real-world applications that usually require customized dispersion. To address this bottlenecking challenge, we report ultra-broadband achromatic metasurfaces that are capable of delivering arbitrary and frequency-independent wave properties by bottom-up topology optimization. We successively demonstrate three ultra-broadband functionalities, including acoustic beam steering, focusing and levitation, featuring record-breaking relative bandwidths of 93.3%, 120% and 118.9%, respectively. All metasurface elements show novel asymmetric geometries containing multiple scatters, curved air channels and local cavities. Moreover, we reveal that the inversely designed metasurfaces can support integrated internal resonances, bi-anisotropy and multiple scattering, which collectively form the mechanism underpinning the ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband high-efficiency achromatic functional devices on demand, with promising extension to the optical and elastic achromatic metamaterials.


قيم البحث

اقرأ أيضاً

Meta-optics based on optically-resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces emerged recently as a novel platform for meta-optics, and they offer unique oppo rtunities for control of light in optoelectronic devices. Here we employ the generalized Kerker conditions to overlap electric and magnetic Mie resonances in each meta-atom of MAPbBr3 perovskite metasurface and demonstrate broadband suppression of reflection down to 4%. We reveal also that metasurface nanostructuring is also beneficial for the enhancement of photoluminescence. Our results may be useful for applications of nanostructured halide perovskites in photovoltaics and semi-transparent multifunctional metadevices where reflection reduction is important for their high efficiency.
Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To date, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 microns. Operation in m id-infrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.
We theoretically and experimentally propose two designs of broadband low-frequency acoustic metasurface absorbers (Sample I/Sample II) for the frequency ranges of 458Hz~968Hz and 231Hz~491Hz (larger than 1 octave), with absorption larger than 0.8, an d having the ultra-thin thickness of 5.2cm and 10.4cm respectively ({lambda}/15 for the lowest working frequency and {lambda}/7.5 for the highest frequency). The designed supercell consists of 16 different unit cells corresponding to 16 eigen frequencies for resonant absorptions. The coupling of multiple resonances leads to broadband absorption effect in the full range of the targeted frequency spectrum. In particular, we propose to combine gradient-change channel and coiled structure to achieve simultaneous impedance matching and minimal occupied space, leading to the ultra-thin thickness of the metasurface absorbers. Our conceived ultra-thin low-frequency broadband absorbers may lead to pragmatic implementations and applications in noise control field.
Recently, the multilevel diffractive lenses (MDLs) have attracted considerable attention mainly due to their superior wave focusing performance; however, efforts to correct the chromatic aberration are still in progress. Here, we demonstrate the nume rical design and experimental demonstration of high-numerical aperture (NA) (${sim}0.99$), diffraction-limited achromatic multilevel diffractive lens (AMDL) operating in microwave range $10 GHz$ - $14 GHz$. A multi-objective differential evolution (MO-DE) algorithm is incorporated with the three-dimensional finite-difference time-domain (3D FDTD) method to optimize both the heights and widths of each concentric ring (zone) of the AMDL structure. In this study, the desired focal distance ${Delta}F_d$ is treated as an optimization parameter in addition to the structural parameters of the zones for the first time. In other words, MO-DE diminishes the necessity of predetermined focal distance and center wavelength by also providing an alternative method for phase profile tailoring. The proposed AMDL can be considered as an ultra-compact, the radius is $3.7{lambda_c}$ where ${lambda_c}$ is the center wavelength (i.e., $12 GHz$ frequency), and flat lens which has a thickness of ${lambda_c}$. The numerically calculated full-width at half-maximum (FWHM) values are below $0.554{lambda}$ and focusing efficiency values are varying between $28{%}$ and $45.5{%}$. To experimentally demonstrate the functionality of the optimized lens, the AMDL composing of polylactic acid material (PLA) polymer is fabricated via 3D-printing technology. The numerical and experimental results are compared, discussed in detail and a good agreement between them is observed. Moreover, the verified AMDL in microwave regime is scaled down to the visible wavelengths to observe achromatic and diffraction-limited focusing behavior between $380 nm$ - $620 nm$ wavelengths.
130 - Jie Jiang , Chongyi Ling , Tao Xu 2018
Defect induced trap states are essential in determining the performance of semiconductor photodetectors. The de-trap time of carriers from a deep trap could be prolonged by several orders of magnitude as compared to shallow trap, resulting in additio nal decay/response time of the device. Here, we demonstrate that the trap states in two-dimensional ReS2 could be efficiently modulated by defect engineering through molecule decoration. The deep traps that greatly prolong the response time could be mostly filled by Protoporphyrin (H2PP) molecules. At the same time, carrier recombination and shallow traps would in-turn play dominant roles in determining the decay time of the device, which can be several orders of magnitude faster than the as-prepared device. Moreover, the specific detectivity of the device is enhanced (as high as ~1.89 x 10^13 Jones) due to the significant reduction of dark current through charge transfer between ReS2 and molecules. Defect engineering of trap states therefore provides a solution to achieve photodetectors with both high responsivity and fast response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا