ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient and reliable growth method for epitaxial complex oxide films by molecular beam epitaxy

592   0   0.0 ( 0 )
 نشر من قبل Yuefeng Nie
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal oxide heterostructures and interfaces host a variety of exciting quantum phases and can be grown with atomic-scale precision by utilising the intensity oscillations of $in$ $situ$ reflection high-energy electron diffraction (RHEED). However, establishing a stable oscillation pattern in the growth calibration of complex oxides films is very challenging and time consuming. Here, we develop a substantially more efficient and reliable growth calibration method for complex oxide films using molecular beam epitaxy.



قيم البحث

اقرأ أيضاً

Two-dimensional crystals are an important class of materials for novel physics, chemistry, and engineering. Germanane (GeH), the germanium-based analogue of graphane (CH), is of particular interest due to its direct band gap and spin-orbit coupling. Here, we report the successful co-deposition growth of CaGe2 films on Ge(111) substrates by molecular beam epitaxy (MBE) and their subsequent conversion to germanane by immersion in hydrochloric acid. We find that the growth of CaGe2 occurs within an adsorption-limited growth regime, which ensures stoichiometry of the film. We utilize in situ reflection high energy electron diffraction (RHEED) to explore the growth temperature window and find the best RHEED patterns at 750 {deg}C. Finally, the CaGe2 films are immersed in hydrochloric acid to convert the films to germanane. Auger electron spectroscopy of the resulting film indicates the removal of Ca and RHEED patterns indicate a single-crystal film with in-plane orientation dictated by the underlying Ge(111) substrate. X-ray diffraction and Raman spectroscopy indicate that the resulting films are indeed germanane. Ex situ atomic force microscopy (AFM) shows that the grain size of the germanane is on the order of a few micrometers, being primarily limited by terraces induced by the miscut of the Ge substrate. Thus, optimization of the substrate could lead to the long-term goal of large area germanane films.
271 - T. Kawaguchi , H. Uemura , T. Ohno 2009
Epitaxial films of NdFeAsO were grown on GaAs substrates by molecular beam epitaxy (MBE). All elements including oxygen were supplied from solid sources using Knudsen cells. The x-ray diffraction pattern of the film prepared with the optimum growth c ondition showed no indication of impurity phases. Only (00l) peaks were observed, indicating that NdFeAsO was grown with the c-axis perpendicular to the substrate. The window of optimum growth condition was very narrow, but the NdFeAsO phase was grown with a very good reproducibility. Despite the absence of any appreciable secondary phase, the resistivity showed an increase with decreasing temperature.
We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional MBE that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.
163 - B. Li , W. G. Chen , X. Guo 2016
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2 Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we have revealed the strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.
SrMoO$_3$ is a promising material for its excellent electrical conductivity, but growing high-quality thin films remains a challenge. Here we synthesized epitaxial films of SrMoO$_3$ using the molecular beam epitaxy (MBE) technique under a low oxygen -flow rate. Introduction of SrTiO$_3$ buffer layers of 4--8 unit cells between the film and the (001)-oriented SrTiO$_3$ or KTaO$_3$ substrate was crucial to remove impurities and/or roughness of the film surface. The obtained film shows improved electrical conductivities as compared with films obtained by other techniques. The high quality of the SrMoO$_3$ film is also verified by angle-resolved photoemission spectroscopy (ARPES) measurements showing clear Fermi surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا