ترغب بنشر مسار تعليمي؟ اضغط هنا

Power density spectra of modes of orbital motion in strongly curved spacetime: obtaining the observable signal

321   0   0.0 ( 0 )
 نشر من قبل Gabriel Torok Jr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High frequency quasi-periodic oscillations (HF QPOs) appear in the X-ray variability of several accreting low-mass binaries. In a series of works it was suggested that these QPOs may have connection to inhomogeneities orbiting close to an inner edge of the accretion disc. In this paper we explore the appearance of an observable signal generated by small radiating circular hot spots moving along quasi-elliptic trajectories close to the innermost stable circular orbit in the Schwarzschild spacetime. Our consideration takes into account the capabilities of observatories that have been operating in the past two decades represented by the Rossi X-ray Timing Explorer (RXTE) and the proposed future instruments represented by the Large Observatory for X-ray Timing (LOFT). For these purposes we choose such model parameters that lead to lightcurves comparable to those observed in Galactic black hole sources, in particular the microquasar GRS 1915+105. We find that when a weak signal corresponding to the hot-spot Keplerian frequency is around the limits of the RXTE detectability, the LOFT observations can clearly reveal its first and second harmonics. Moreover, in some specific situations the radial epicyclic frequency of the spot can be detected as well. Finally, we also compare the signal produced by the spots to the signal produced by axisymmetric epicyclic disc-oscillation modes and discuss the key differences that could be identified via the proposed future technology. We conclude that the ability to recognize the harmonic content of the signal can help to distinguish between the different proposed physical models.

قيم البحث

اقرأ أيضاً

67 - C. Guidorzi 2016
Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to sea rch for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs emerge: with or without a unique dominant timescale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond-dominant timescales and duration longer than a few tens of seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for a periodic signal at ~3 sigma (Gaussian) significance, corresponding to a multitrial chance probability of ~1%. Thus, we found no compelling evidence for periodic signals. The analogy between the PDS of GRBs and of AGNs could tentatively indicate similar stochastic processes that rule BH accretion across different BH mass scales and objects. In addition, we find evidence that short dominant timescales and duration are not completely independent of each other, in contrast with commonly accepted paradigms (abridged).
Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime before reaching the observer. In order to help interpret observations of such polarized emission, accurate and efficient numerical s chemes for polarized radiative transfer in curved spacetime are needed. In this manuscript we extend our publicly available radiative transfer code RAPTOR to include polarization. We provide a brief review of different codes and methods for covariant polarized radiative transfer available in the literature and existing codes, and present an efficient new scheme. For the spacetime-propagation aspect of the computation, we develop a compact, Lorentz-invariant representation of a polarized ray. For the plasma-propagation aspect of the computation, we perform a formal analysis of the stiffness of the polarized radiative-transfer equation with respect to our explicit integrator, and develop a hybrid integration scheme that switches to an implicit integrator in case of stiffness, in order to solve the equation with optimal speed and accuracy for all possible values of the local optical/Faraday thickness of the plasma. We perform a comprehensive code verification by solving a number of well-known test problems using RAPTOR and comparing its output to exact solutions. We also demonstrate convergence with existing polarized radiative-transfer codes in the context of complex astrophysical problems. RAPTOR is capable of performing polarized radiative transfer in arbitrary, highly curved spacetimes. This capability is crucial for interpreting polarized observations of accreting black holes, which can yield information about the magnetic-field configuration in such accretion flows. The efficient formalism implemented in RAPTOR is computationally light and conceptually simple. The code is publicly available.
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spheric al shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power-law with an exponential cutoff. The surface brightness profile of radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed $u_s sim 3times 10^3 kms$ and sonic Mach number $M_s sim 3$. These shocks produce curved radio spectra that steepen gradually over $(0.1-10) u_{rm br}$ with break frequency $ u_{rm br}sim 1$ GHz, if the duration of electron acceleration is $sim 60 - 80$ Myr. However, the abrupt increase of spectral index above $sim 1.5$ GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with $gamma_e gtrsim 10^4$.
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift $z$ and Fourier number $k$. Previous studies have performed principal component forec asts for several choices of these two functions, based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and, probably most, of these degrees of freedom were physical if the parametrization had allowed for an arbitrary $k$-dependence. In this paper, we restrict the $k$-dependence to that allowed in local theories of gravity under the quasi-static approximation, i.e. ratios of polynomials in $k$, and identify the best constrained features in the ($z$,$k$)-dependence of the commonly considered functions $mu$ and $gamma$ as measured by an LSST-like weak lensing survey. We estimate the uncertainty in the measurements of the eigenmodes of modified growth. We find that imposing the theoretical prior on $k$-dependence reduces the number of degrees of freedom and the covariance between parameters. On the other hand, imaging surveys like LSST are not as sensitive to the $z$-dependence as they are to the $k$-dependence of the modified growth functions. This trade off provides us with, more or less, the same number of well-constrained eigenmodes (with respect to our prior) as found before, but now these modes are physical.
CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا