ترغب بنشر مسار تعليمي؟ اضغط هنا

Observable physical modes of modified gravity

161   0   0.0 ( 0 )
 نشر من قبل Alireza Hojjati
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift $z$ and Fourier number $k$. Previous studies have performed principal component forecasts for several choices of these two functions, based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and, probably most, of these degrees of freedom were physical if the parametrization had allowed for an arbitrary $k$-dependence. In this paper, we restrict the $k$-dependence to that allowed in local theories of gravity under the quasi-static approximation, i.e. ratios of polynomials in $k$, and identify the best constrained features in the ($z$,$k$)-dependence of the commonly considered functions $mu$ and $gamma$ as measured by an LSST-like weak lensing survey. We estimate the uncertainty in the measurements of the eigenmodes of modified growth. We find that imposing the theoretical prior on $k$-dependence reduces the number of degrees of freedom and the covariance between parameters. On the other hand, imaging surveys like LSST are not as sensitive to the $z$-dependence as they are to the $k$-dependence of the modified growth functions. This trade off provides us with, more or less, the same number of well-constrained eigenmodes (with respect to our prior) as found before, but now these modes are physical.



قيم البحث

اقرأ أيضاً

142 - Alireza Hojjati 2012
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters a nd to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
We explore the impact of modified gravity on B-modes, identifying two main separate effects: lensing and propagation of tensor modes. The location of the inflationary peak of the BB spectrum depends on the speed of gravitational waves; the amplitude of the lensing contribution depends on the anisotropic stress. We single out these effects using the quasi-static regime and considering models for which the background and the growth of matter perturbations are standard. Using available data we obtain that the gravitational wave speed is compatible with the speed of light and constrained to within about 10%.
The observed accelerated expansion of the Universe may be explained by dark energy or the breakdown of general relativity (GR) on cosmological scales. When the latter case, a modified gravity scenario, is considered, it is often assumed that the back ground evolution is the same as the $Lambda$CDM model but the density perturbation evolves differently. In this paper, we investigate more general classes of modified gravity, where both the background and perturbation evolutions are deviated from those in the $Lambda$CDM model. We introduce two phase diagrams, $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams; $H$ is the expansion rate, $fsigma_8$ is a combination of the growth rate of the Universe and the normalization of the density fluctuation which is directly constrained by redshift-space distortions, and $alpha$ is a parameter which characterizes the deviation of gravity from GR and can be probed by gravitational lensing. We consider several specific examples of Horndeskis theory, which is a general scalar-tensor theory, and demonstrate how deviations from the $Lambda$CDM model appears in the $alpha{rm-}fsigma _8$ and $H{rm-}fsigma _8$ diagrams. The predicted deviations will be useful for future large-scale structure observations to exclude some of the modified gravity models.
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework integrates dark matter into a type-II minimally modified gravity that was recently proposed as a dark energy mimicker. The idea that makes such a framework possible consists of coupling a dark matter Lagrangian and a cosmological constant to the metric in a canonically transformed frame of general relativity (GR). On imposing a gauge fixing constraint, which explicitly breaks the temporal diffeomorphism invariance, we keep the number of gravitational degrees of freedom to be two, as in GR. We then make the inverse canonical transformation to bring the theory back to the original frame, where one can add the standard matter fields. This framework contains two free functions of time which specify the generating functional of the above mentioned canonical transformation and which are then used in order to realize desired time evolutions of both the Hubble expansion rate $H(z)$ and the effective gravitational constant for dark matter $G_{rm eff}(z)$. The aim of this paper is therefore to provide a new framework to address the two puzzles present in todays cosmology, i.e. the $H_0$ tension and the $S_8$ tension, simultaneously. When the dark matter is cold in this framework, we dub the corresponding cosmological model the V Canonical Cold Dark Matter (VCCDM), as the cosmological constant $Lambda$ in the standard $Lambda$CDM is replaced by a function $V(phi)$ of an auxiliary field $phi$ and the CDM is minimally coupled to the metric in a canonically transformed frame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا