ﻻ يوجد ملخص باللغة العربية
CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes.
Observations of pressure-gravity mixed modes, combined with a theoretical framework for understanding mode formation, can yield a wealth of information about deep stellar interiors. In this paper, we seek to develop a formalism for treating the effec
Seismic observations by the space-borne mission emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution
The space missions CoRoT and Kepler provide high quality data that allow us to test the transport of angular momentum in stars by the seismic determination of the internal rotation profile. Our aim is to test the validity of the seismic diagnostics f
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angu
The detection of mixed modes in subgiants and red giants by the CoRoT and emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a