ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new method for the simulation of the exit time and position of a $delta$-dimensional Brownian motion from a domain. The main interest of our method is that it avoids splitting time schemes as well as inversion of complicated series. The idea is to use the connexion between the $delta$-dimensional Bessel process and the $delta$-dimensional Brownian motion thanks to an explicit Bessel hitting time distribution associated with a particular curved boundary. This allows to build a fast and accurate numerical scheme for approximating the hitting time. Numerical comparisons with existing methods are performed.
Let $D$ be an unbounded domain in $RR^d$ with $dgeq 3$. We show that if $D$ contains an unbounded uniform domain, then the symmetric reflecting Brownian motion (RBM) on $overline D$ is transient. Next assume that RBM $X$ on $overline D$ is transient
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to g
We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation en
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
We consider the scaling behavior of the range and $p$-multiple range, that is the number of points visited and the number of points visited exactly $pgeq 1$ times, of simple random walk on ${mathbb Z}^d$, for dimensions $dgeq 2$, up to time of exit f