ﻻ يوجد ملخص باللغة العربية
Let $D$ be an unbounded domain in $RR^d$ with $dgeq 3$. We show that if $D$ contains an unbounded uniform domain, then the symmetric reflecting Brownian motion (RBM) on $overline D$ is transient. Next assume that RBM $X$ on $overline D$ is transient and let $Y$ be its time change by Revuz measure ${bf 1}_D(x) m(x)dx$ for a strictly positive continuous integrable function $m$ on $overline D$. We further show that if there is some $r>0$ so that $Dsetminus overline {B(0, r)}$ is an unbounded uniform domain, then $Y$ admits one and only one symmetric diffusion that genuinely extends it and admits no killings. In other words, in this case $X$ (or equivalently, $Y$) has a unique Martin boundary point at infinity.
A time-changed mixed fractional Brownian motion is an iterated process constructed as the superposition of mixed fractional Brownian motion and other process. In this paper we consider mixed fractional Brownian motion of parameters a, b and Hin(0, 1)
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. This is analogous to results for excited (or cookie) random walks.
We prove the existence of the intersection local time for two independent, d -dimensional fractional Brownian motions with the same Hurst parameter H. Assume d greater or equal to 2, then the intersection local time exists if and only if Hd<2.
Roughly speaking, a space with varying dimension consists of at least two components with different dimensions. In this paper we will concentrate on the one, which can be treated as $mathbb{R}^3$ tying a half line not contained by $mathbb{R}^3$ at th
In this paper we introduce a new method for the simulation of the exit time and position of a $delta$-dimensional Brownian motion from a domain. The main interest of our method is that it avoids splitting time schemes as well as inversion of complica