ترغب بنشر مسار تعليمي؟ اضغط هنا

AGB stars and presolar grains

107   0   0.0 ( 0 )
 نشر من قبل Maurizio Busso dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value cite{mar}, and $^{12}$C/$^{13}$C ratios $gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al$_{2}$O$_{3}$ crystals. Here, the oxygen isotopes and the content in $^{26}$Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.



قيم البحث

اقرأ أيضاً

Isotope ratios can be measured in presolar SiC grains from ancient Asymptotic Giant Branch (AGB) stars at permil-level (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavy-element isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.
The vast majority (>=90%) of presolar SiC grains identified in primitive meteorites are relics of ancient asymptotic giant branch (AGB) stars, whose ejecta were incorporated into the Solar System during its formation. Detailed characterization of the se ancient stardust grains has revealed precious information on mixing processes in AGB interiors in great detail. However, the mass and metallicity distribution of their parent stars still remains ambiguous, although such information is crucial to investigating the slow neutron capture process, whose efficiency is mass- and metallicity-dependent. Using a well-known Milky Way chemo-dynamical model, we follow the evolution of the AGB stars that polluted the Solar System at 4.57 Gyr ago and weighted the stars based on their SiC dust productions. We find that presolar SiC in the Solar System predominantly originated from AGB stars with M~2 Msun and Z~Zsun. Our finding well explains the grain-size distribution of presolar SiC identified in situ in primitive meteorites. Moreover, it provides complementary results to very recent papers dealing with the characterization of parent stars of presolar SiC.
We discuss theoretical AGB predictions for hydrogen-deficient PG 1159 stars and Sakurais object, which show peculiar enhancements in He, C and O, and how these enhancements may be understood in the framework of a very late thermal pulse nucleosynthet ic event. We then discuss the nucleosynthesis origin of rare subclasses of presolar grains extracted from carbonaceous meteorites, the SiC AB grains showing low 12C/13C in the range 2 to 10 and the very few high-density graphite grains with 12C/13C around 10.
Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentative ly relate this to presolar grain composition. We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. We found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of evolved stars is a useful diagnostic tool for the study of the GCE and presolar grains.
Stardust grains that originated in ancient stars and supernovae are recovered from meteorites and carry the detailed composition of their astronomical sites of origin. We present evidence that the majority of large ($mu$m-sized) meteoritic silicon ca rbide (SiC) grains formed in C-rich asymptotic giant branch (AGB) stars that were more metal-rich than the Sun. In the framework of the slow neutron-captures (the s process) that occurs in AGB stars the lower-than-solar 88Sr/86Sr isotopic ratios measured in the large SiC grains can only be accompanied by Ce/Y elemental ratios that are also lower than solar, and predominately observed in metal-rich barium stars - the binary companions of AGB stars. Such an origin suggests that these large grains represent the material from high-metallicity AGB stars needed to explain the s-process nucleosynthesis variations observed in bulk meteorites (Ek et al. 2020). In the outflows of metal-rich, C-rich AGB stars SiC grains are predicted to be small ($simeq$ 0.2 $mu$m-sized); large ($simeq$ $mu$m-sized) SiC grains can grow if the number of dust seeds is two to three orders of magnitude lower than the standard value of $10^{-13}$ times the number of H atoms. We therefore predict that with increasing metallicity the number of dust seeds might decrease, resulting in the production of larger SiC grains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا