ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-buoyancy Induced Mixing in AGB Stars: Presolar SiC Grains

66   0   0.0 ( 0 )
 نشر من قبل Diego Vescovi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isotope ratios can be measured in presolar SiC grains from ancient Asymptotic Giant Branch (AGB) stars at permil-level (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavy-element isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.



قيم البحث

اقرأ أيضاً

Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis mo dels for AGB stars cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value cite{mar}, and $^{12}$C/$^{13}$C ratios $gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al$_{2}$O$_{3}$ crystals. Here, the oxygen isotopes and the content in $^{26}$Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.
The vast majority (>=90%) of presolar SiC grains identified in primitive meteorites are relics of ancient asymptotic giant branch (AGB) stars, whose ejecta were incorporated into the Solar System during its formation. Detailed characterization of the se ancient stardust grains has revealed precious information on mixing processes in AGB interiors in great detail. However, the mass and metallicity distribution of their parent stars still remains ambiguous, although such information is crucial to investigating the slow neutron capture process, whose efficiency is mass- and metallicity-dependent. Using a well-known Milky Way chemo-dynamical model, we follow the evolution of the AGB stars that polluted the Solar System at 4.57 Gyr ago and weighted the stars based on their SiC dust productions. We find that presolar SiC in the Solar System predominantly originated from AGB stars with M~2 Msun and Z~Zsun. Our finding well explains the grain-size distribution of presolar SiC identified in situ in primitive meteorites. Moreover, it provides complementary results to very recent papers dealing with the characterization of parent stars of presolar SiC.
Stardust grains that originated in ancient stars and supernovae are recovered from meteorites and carry the detailed composition of their astronomical sites of origin. We present evidence that the majority of large ($mu$m-sized) meteoritic silicon ca rbide (SiC) grains formed in C-rich asymptotic giant branch (AGB) stars that were more metal-rich than the Sun. In the framework of the slow neutron-captures (the s process) that occurs in AGB stars the lower-than-solar 88Sr/86Sr isotopic ratios measured in the large SiC grains can only be accompanied by Ce/Y elemental ratios that are also lower than solar, and predominately observed in metal-rich barium stars - the binary companions of AGB stars. Such an origin suggests that these large grains represent the material from high-metallicity AGB stars needed to explain the s-process nucleosynthesis variations observed in bulk meteorites (Ek et al. 2020). In the outflows of metal-rich, C-rich AGB stars SiC grains are predicted to be small ($simeq$ 0.2 $mu$m-sized); large ($simeq$ $mu$m-sized) SiC grains can grow if the number of dust seeds is two to three orders of magnitude lower than the standard value of $10^{-13}$ times the number of H atoms. We therefore predict that with increasing metallicity the number of dust seeds might decrease, resulting in the production of larger SiC grains.
We identify three isotopic tracers that can be used to constrain the $^{13}C$-pocket and show the correlated isotopic ratios of Sr and Ba in single mainstream presolar SiC grains. These newly measured data can be explained by postprocess AGB model ca lculations with large $^{13}C$-pockets with a range of relatively low $^{13}C$ concentrations, which may suggest that multiple mixing processes contributed to the $^{13}C$-pocket formation in parent AGB stars.
Extreme excesses of $^{13}C$ ($^{12}C$/$^{13}C$<10) and $^{15}N$ ($^{14}N$/$^{15}N$<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been pr oposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized $^{13}C$- and $^{15}N$-enriched presolar SiC grains ($^{12}C$/$^{13}C$<16 and $^{14}N$/$^{15}N$<~100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in $^{13}C$ and $^{15}N$, but with quite diverse Si isotopic signatures. Four grains with $^{29,30}Si$ excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with $^{30}Si$ excesses and $^{29}Si$ depletions show lower-than-solar $^{34}S$/$^{32}S$ ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also $^{13}C$ enriched, but have a range of higher $^{14}N$/$^{15}N$. We found that $^{15}N$-enriched AB grains (~50<$^{14}N$/$^{15}N$<~100) have distinctive isotopic signatures compared to putative nova grains, such as higher $^{14}N$/$^{15}N$, lower $^{26}Al$/$^{27}Al$, and lack of $^{30}Si$ excess, indicating weaker proton-capture nucleosynthetic environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا