ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleosynthesis origin of PG 1159 stars, Sakurais object and of rare subclasses of presolar grains

58   0   0.0 ( 0 )
 نشر من قبل Sara Bisterzo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss theoretical AGB predictions for hydrogen-deficient PG 1159 stars and Sakurais object, which show peculiar enhancements in He, C and O, and how these enhancements may be understood in the framework of a very late thermal pulse nucleosynthetic event. We then discuss the nucleosynthesis origin of rare subclasses of presolar grains extracted from carbonaceous meteorites, the SiC AB grains showing low 12C/13C in the range 2 to 10 and the very few high-density graphite grains with 12C/13C around 10.

قيم البحث

اقرأ أيضاً

Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis mo dels for AGB stars cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value cite{mar}, and $^{12}$C/$^{13}$C ratios $gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al$_{2}$O$_{3}$ crystals. Here, the oxygen isotopes and the content in $^{26}$Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.
This work presents a large consistent study of molybdenum (Mo) and ruthenium (Ru) abundances in the Milky Way. These two elements are important nucleosynthetic diagnostics. In our sample of 71 Galactic metal-poor field stars, we detect Ru and/or Mo i n 51 of these (59 including upper limits). The sample consists of high-resolution, high signal-to-noise spectra covering both dwarfs and giants from [Fe/H]=-0.63 down to -3.16. Thus we provide information on the behaviour of Mo I and Ru I at higher and lower metallicity than is currently known. We find a wide spread in the Mo and Ru abundances, which is typical of heavy elements. This indicates that several formation processes, in addition to high entropy winds, can be responsible for the formation of Mo and Ru. The formation processes are traced by comparing Mo and Ru to elements (Sr, Zr, Pd, Ag, Ba, and Eu) with known formation processes. We find contributions from different formation channels, namely p-, slow (s-), and rapid (r-) neutron-capture processes. Molybdenum is a highly convolved element that receives contributions from several processes, whereas Ru is mainly formed by the weak r-process as is silver. We also compare our absolute elemental stellar abundances to relative isotopic abundances of presolar grains extracted from meteorites. Their isotopic abundances can be directly linked to the formation process (e.g. r-only isotopes) providing a unique comparison between observationally derived abundances and the nuclear formation process. The comparison to abundances in presolar grains shows that the r-/s-process ratios from the presolar grains match the total elemental chemical composition derived from metal-poor halo stars with [Fe/H]~ -1.5 to -1.1 dex. This indicates that both grains and stars around and above [Fe/H]=-1.5 are equally (well) mixed and therefore do not support a heterogeneous presolar nebula... Abridged.
Isotope ratios can be measured in presolar SiC grains from ancient Asymptotic Giant Branch (AGB) stars at permil-level (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavy-element isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.
Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP ) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He-rich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of $mathrm{H}approx,20,$% by mass (AFTP), $approx 1,$% (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of $T_mathrm{eff} = 115,000pm 5,000,$K and determine surface gravities of $log (g,/,mathrm{cm/s^2}) = 5.6pm 0.1$ for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of $0.57^{+0.07}_{-0.04},M_odot$ and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of $0.25 pm 0.03$ and $0.15 pm 0.03$, respectively, and a Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution timescales expected from the AFTP scenario and alternatives should be explored.
V4334 Sgr (a.k.a. Sakurais object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 200 1. The goal is to improve the evolutionary models by constraining them with the temporal evolution of the central star temperature. In addition the high resolution spectral observations obtained by X-shooter and ALMA show the temporal evolution of the different morphological components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا