ﻻ يوجد ملخص باللغة العربية
A {it sign pattern matrix} is a matrix whose entries are from the set ${+,-, 0}$. The minimum rank of a sign pattern matrix $A$ is the minimum of the ranks of the real matrices whose entries have signs equal to the corresponding entries of $A$. It is shown in this paper that for any $m times n$ sign pattern $A$ with minimum rank $n-2$, rational realization of the minimum rank is possible. This is done using a new approach involving sign vectors and duality. It is shown that for each integer $ngeq 9$, there exists a nonnegative integer $m$ such that there exists an $ntimes m$ sign pattern matrix with minimum rank $n-3$ for which rational realization is not possible. A characterization of $mtimes n$ sign patterns $A$ with minimum rank $n-1$ is given (which solves an open problem in Brualdi et al. cite{Bru10}), along with a more general description of sign patterns with minimum rank $r$, in terms of sign vectors of certain subspaces. A number of results on the maximum and minimum numbers of sign vectors of $k$-dimensional subspaces of $mathbb R^n$ are obtained. In particular, it is shown that the maximum number of sign vectors of $2$-dimensional subspaces of $mathbb R^n$ is $4n+1$. Several related open problems are stated along the way.
A emph{sign pattern (matrix)} is a matrix whose entries are from the set ${+, -, 0}$. The emph{minimum rank} (respectively, emph{rational minimum rank}) of a sign pattern matrix $cal A$ is the minimum of the ranks of the real (respectively, rational)
A sign pattern matrix is a matrix whose entries are from the set ${+,-,0}$. If $A$ is an $mtimes n$ sign pattern matrix, the qualitative class of $A$, denoted $Q(A)$, is the set of all real $mtimes n$ matrices $B=[b_{i,j}]$ with $b_{i,j}$ positive (r
The refined inertia of a square real matrix $A$ is the ordered $4$-tuple $(n_+, n_-, n_z, 2n_p)$, where $n_+$ (resp., $n_-$) is the number of eigenvalues of $A$ with positive (resp., negative) real part, $n_z$ is the number of zero eigenvalues of $A$
We consider various properties and manifestations of some sign-alternating univariate polynomials borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a theory of the root geometry of polynomial
Sign language lexica are a useful resource for researchers and people learning sign languages. Current implementations allow a user to search a sign either by its gloss or by selecting its primary features such as handshape and location. This study f