ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplexed entangled photon sources for all fiber quantum networks

92   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Zhou Mr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advantage of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all fiber quantum network.

قيم البحث

اقرأ أيضاً

Guided-wave platforms such as fiber and silicon-on-insulator waveguide show great advances over traditional free space implementations in quantum information technology for significant advantages of low transmission loss, low cost, integrability and compatible with mature fiber communication systems. Interference between independent photon sources is the key to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. In this work, we report Hong-Ou-Mandel interference between two independent all fiber photon pair sources over two 100GHz dense wave division multiplexing channels, the visibility reaches 53.2(8.4)% (82.9(5.3)%) without (with) back ground counts subtracted. In addition, we give a general theoretical description of the purity of the photon pair generation in dispersion shifted fiber and obtain the optimized condition for high purity photon pair generation. We also obtain a maximum coincidence to back ground ratio of 131 by cooling the fiber in liquid nitrogen. Our study shows great promising of integrated optical elements for future scalable quantum information promising.
Semiconductor quantum dots are promising constituents for future quantum communication. Although deterministic, fast, efficient, coherent, and pure emission of entangled photons has been realized, implementing a practical quantum network remains outs tanding. Here we explore the limits for sources of polarization-entangled photons from the commonly used biexciton-exciton cascade. We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks. The consequences of device fabrication, dynamic tuning techniques and statistical effects for practical network applications are investigated. We identify the critical device parameters and present a numerical model for benchmarking the device scalability in order to bring the realization of distributed semiconductor-based quantum networks one step closer to reality.
High-flux entangled photon source is the key resource for quantum optical study and application. Here it is realized in a lithium niobate on isolator (LNOI) chip, with 2.79*10^11 Hz/mW photon pair rate and 1.53*10^9 Hz/nm/mW spectral brightness. Thes e data are boosted by over two orders of magnitude compared to existing technologies. A 130-nm broad bandwidth is engineered for 8-channel multiplexed energy-time entanglement. Harnessed by high-extinction frequency correlation and Franson interferences up to 99.17% visibility, such energy-time entanglement multiplexing further enhances high-flux data rate, and warrants broad applications in quantum information processing on a chip.
Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenge s still remain for this material, such as the extremely low yield (<1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material.
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation. The current workhorse technique for producing photon-pairs is via spontaneous parametric down conversion (SPDC) in bulk nonlinear crystals. The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources. This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump, and discusses some of the main considerations when building for deployment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا