ﻻ يوجد ملخص باللغة العربية
We establish a novel approach to probing spatially resolved multi-time correlation functions of interacting many-body systems, with scalable experimental overhead. Specifically, designing nonlinear measurement protocols for multidimensional spectra in a chain of trapped ions with single-site addressability enables us, e.g., to distinguish coherent from incoherent transport processes, to quantify potential anharmonicities, and to identify decoherence-free subspaces.
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experim
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose