ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-classical transition for an analog of double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems

231   0   0.0 ( 0 )
 نشر من قبل Luis Benet
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D$_2$ chemical reaction. Thus we demonstrate the quantum--classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.

قيم البحث

اقرأ أيضاً

169 - FG Scholtz 2021
We explore a possible connection between non-commutative space and the quantum-to-classical transition by computing the outcome of a double slit experiment in the non-commutative plane. We find that the interference term undergoes a Gaussian suppress ion at high momentum, which translates into a mass dependent suppression for composite objects and the emergence of classical behaviour at macroscopic scales.
We establish a novel approach to probing spatially resolved multi-time correlation functions of interacting many-body systems, with scalable experimental overhead. Specifically, designing nonlinear measurement protocols for multidimensional spectra i n a chain of trapped ions with single-site addressability enables us, e.g., to distinguish coherent from incoherent transport processes, to quantify potential anharmonicities, and to identify decoherence-free subspaces.
192 - Dvir Kafri , Jacob Taylor 2015
Controllable systems relying on quantum behavior to simulate distinctly quantum models so far rely on increasingly challenging classical computing to verify their results. We develop a general protocol for confirming that an arbitrary many-body syste m, such as a quantum simulator, can entangle distant objects. The protocol verifies that distant qubits interacting separately with the system can become mutually entangled, and therefore serves as a local test that excitations of the system can create non-local quantum correlations. We derive an inequality analogous to Bells inequality which can only be violated through entanglement between distant sites of the many-body system. Although our protocol is applicable to general many-body systems, it requires finding system-dependent local operations to violate the inequality. A specific example in quantum magnetism is presented.
We have experimentally tested a recently suggested possibility for anomalous sensitivity of the cross sections of dissipative heavy ion collisions. Cross sections for the $^{19}$F+$^{27}$Al dissipative collisions were measured at the fixed energy 118 .75 MeV of the $^{19}$F for the 12 different beam spots on the same target foil. The data demonstrate dramatic differences between the cross sections for the different beam spots. The effect may indicate deterministic randomness in complex quantum collisions. New experiments are highly desirable in a view of the fundamental importance of the problem.
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition. We also perform quantum quench studies to distinguish the behavior of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to investigate quantum correlations experimentally in a non-destructive way, in contrast to measures that require tracing out a subsystem, which always destroys coherence and correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا