ﻻ يوجد ملخص باللغة العربية
We study the Zeeman splitting in lateral quantum dots that are defined in GaAs-AlGaAs het- erostructures by means of split gates. We demonstrate a non-linear dependence of the splitting on magnetic field and its substantial variations from dot to dot and from heterostructure to het- erostructure. These phenomena are important in the context of information processing since the tunability and dot-dependence of the Zeeman splitting allow for a selective manipulation of spins. We show that spin-orbit effects related to the GaAs band structure quantitatively explain the ob- served magnitude of the non-linear dependence of the Zeeman splitting. Furthermore, spin-orbit effects result in a dependence of the Zeeman splitting on predominantly the out-of-plane quantum dot confinement energy. We also show that the variations of the confinement energy due to charge disorder in the heterostructure may explain the dependence of Zeeman splitting on the dot position. This position may be varied by changing the gate voltages which leads to an electrically tunable Zeeman splitting.
We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted
We study the Zeeman spin-splitting in hole quantum wires oriented along the $[011]$ and $[01bar{1}]$ crystallographic axes of a high mobility undoped (100)-oriented AlGaAs/GaAs heterostructure. Our data shows that the spin-splitting can be switched `
Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating th
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The
We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential c