ﻻ يوجد ملخص باللغة العربية
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
Modulation-doped GaAs v-groove quantum wires (QWRs) have been fabricated with novel electrical contacts made to two-dimensional electron-gas (2DEG) reservoirs. Here, we present longitudinal photocurrent (photoconductivity/PC) spectroscopy measurement
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. Fr
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitt
We observed a slow relaxation of magnetoresistance in response to applied magnetic field in selectively doped p-GaAs-AlGaAs structures with partially filled upper Hubbard band. We have paid a special attention to exclude the effects related to temper
We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs-core-shell-nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consis