ﻻ يوجد ملخص باللغة العربية
We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ molecules on Cu(111) are imaged with this method, these so-called iso-d$I$/d$V$ maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C$_{60}$ orbitals and their hybridization is then possible.
We present a theoretical analysis of the standing wave patterns in STM images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-s
Compressed sensing (CS) is a valuable technique for reconstructing measurements in numerous domains. CS has not yet gained widespread adoption in scanning tunneling microscopy (STM), despite potentially offering the advantages of lower acquisition ti
We present atomically-resolved STM images of single-wall carbon nanotubes (SWNTs) embedded in a crystalline nanotube rope. Although they may be interpreted as of a chiral nanotube, the images are more consistently explained a an achiral armchair tube
We investigate numerically the possibility to detect the spatial profile of Majorana fermions (MFs) modeling STM tips that are made of either normal or superconducting material. In both cases, we are able to resolve the localization length and the os
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Ad