ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging isodensity contours of molecular states with STM

172   0   0.0 ( 0 )
 نشر من قبل Guillaume Schull
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an improved way for imaging the local density of states with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (d$I$/d$V$) constant. When archetypical C$_{60}$ molecules on Cu(111) are imaged with this method, these so-called iso-d$I$/d$V$ maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C$_{60}$ orbitals and their hybridization is then possible.



قيم البحث

اقرأ أيضاً

We present a theoretical analysis of the standing wave patterns in STM images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-s ize tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects.
Compressed sensing (CS) is a valuable technique for reconstructing measurements in numerous domains. CS has not yet gained widespread adoption in scanning tunneling microscopy (STM), despite potentially offering the advantages of lower acquisition ti me and enhanced tolerance to noise. Here we applied a simple CS framework, using a weighted iterative thresholding algorithm for CS reconstruction, to representative high-resolution STM images of superconducting surfaces and adsorbed molecules. We calculated reconstruction diagrams for a range of scanning patterns, sampling densities, and noise intensities, evaluating reconstruction quality for the whole image and chosen defects. Overall we find that typical STM images can be satisfactorily reconstructed down to 30% sampling - already a strong improvement. We furthermore outline limitations of this method, such as sampling pattern artifacts, which become particularly pronounced for images with intrinsic long-range disorder, and propose ways to mitigate some of them. Finally we investigate compressibility of STM images as a measure of intrinsic noise in the image and a precursor to CS reconstruction, enabling a priori estimation of the effectiveness of CS reconstruction with minimal computational cost.
95 - W. Clauss , D. J. Bergeron , 1998
We present atomically-resolved STM images of single-wall carbon nanotubes (SWNTs) embedded in a crystalline nanotube rope. Although they may be interpreted as of a chiral nanotube, the images are more consistently explained a an achiral armchair tube with a quenched twist distortion. The existence of quenched twists in SWNTs in ropes might explain the fact that both as-grown bulk nanotube material and individual ropes have insulator-like conductivity at low temperature.
We investigate numerically the possibility to detect the spatial profile of Majorana fermions (MFs) modeling STM tips that are made of either normal or superconducting material. In both cases, we are able to resolve the localization length and the os cillation period of the MF wavefunction. We show that the tunneling between the substrate and the tip, necessary to get the information on the wave function oscillations, has to be smaller in the case of a superconducting STM. In the strong tunneling regime, the differential conductance saturates making it more difficult to observe the exponential decay of MFs. The temperature broadening of the profile is strongly suppressed in case of the superconducting lead resulting, generally, in better resolution.
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Ad sorption occurs most favorably in on-top configuration, with the C=C double bond directly above a silver atom and the four N atoms bound to four neighboring Ag atoms. The lowest unoccupied molecular orbital of TCNE becomes occupied due to electron transfer from the substrate. This state dominates the electronic spectrum and the STM image at moderately negative bias. We discuss and employ a spatial extrapolation technique for the calculation of STM and scanning tunneling spectroscopy (STS) images. Our calculated images are in good agreement with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا