ﻻ يوجد ملخص باللغة العربية
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds are lately predicted to host Weyl type excitations in their band structure. These magnetic Heusler compounds with broken time reversal symmetry are expected to show a large momentum space Berry curvature, which introduces several exotic magneto-transport properties. In this report, we present systematic analysis of experimental results on anomalous Hall effect (AHE) in Co$_2$Ti$X$ ($X$=Si and Ge). This study is an attempt to understand the role of Berry curvature on AHE in Co$_2$Ti$X$ family of materials. The anomalous Hall resistivity is observed to scale quadratically with the longitudinal resistivity for both the compounds. The detailed analysis indicates that in anomalous Hall conductivity, the intrinsic Karplus-Luttinger Berry phase mechanism dominates over the extrinsic skew scattering and side-jump mechanism.
We compute the magnetocaloric effect (MCE) in the GdTX (T=Sc, Ti, Co, Fe; X=Si, Ge) compounds as a function of the temperature and the external magnetic field. To this end we use a density functional theory approach to calculate the exchange-coupling
Magnetic lanthanide half-Heuslers ($R$PtBi; $R$ being the lanthanide) represent an attractive subgroup of the Heusler family and have been identified as ideal candidates for time reversal symmetry breaking topological Weyl semimetals. In this paper,
We report a systematic investigation on the magnetization relaxation properties of iron-based half-metallic Heusler alloy Fe$_{2}$Cr$_{1-x}$Co_${x}$Si (FCCS) thin films using broadband angular-resolved ferromagnetic resonance. Band structure engineer
The purpose of this study was to investigate the magnetotransport properties of the Ge(0.743)Pb(0.183)Mn(0.074)Te mixed crystal. The results of magnetization measurements indicated that the compound is a spin-glass-like diluted magnetic semiconductor
The local atomic environments and magnetic properties were investigated for a series of Co(1+x)Fe(2-x)Si (0<x<1) Heusler compounds. While the total magnetic moment in these compounds increases with the number of valance electrons, the highest Curie t