ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and interaction of resonance chains in the open 3-disk system

46   0   0.0 ( 0 )
 نشر من قبل Ulrich Kuhl
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In ballistic open quantum systems one often observes that the resonances in the complex-energy plane form a clear chain structure. Taking the open 3-disk system as a paradigmatic model system, we investigate how this chain structure is reflected in the resonance states and how it is connected to the underlying classical dynamics. Using an efficient scattering approach we observe that resonance states along one chain are clearly correlated while resonance states of different chains show an anticorrelation. Studying the phase space representations of the resonance states we find that their localization in phase space oscillate between different regions of the classical trapped set as one moves along the chains and that these oscillations are connected to a modulation of the resonance spacing. A single resonance chain is thus no WKB quantization of a single periodic orbits, but the structure of several oscillating chains arises from the interaction of several periodic orbits. We illuminate the physical mechanism behind these findings by combining the semiclassical cycle expansion with a quantum graph model.

قيم البحث

اقرأ أيضاً

Proposed to study the dynamics of physiological systems in which the evolution depends on the state in a previous time, the Mackey-Glass model exhibits a rich variety of behaviors including periodic or chaotic solutions in vast regions of the paramet er space. This model can be represented by a dynamical system with a single variable obeying a delayed differential equation. Since it is infinite dimensional requires to specify a real function in a finite interval as an initial condition. Here, the dynamics of the Mackey-Glass model is investigated numerically using a scheme previously validated with experimental results. First, we explore the parameter space and describe regions in which solutions of different periodic or chaotic behaviors exist. Next, we show that the system presents regions of multistability, i.e. the coexistence of different solutions for the same parameter values but for different initial conditions. We remark the coexistence of periodic solutions with the same period but consisting of several maximums with the same amplitudes but in different orders. We reveal that the multibistability is not evenly distribute in the parameter space. To quantify its distribution we introduce families of representative initial condition functions and evaluate the abundance of the coexisting solutions. These findings contribute to describe the complexity of this system and explore the possibility of possible applications such as to store or to code digital information.
143 - Charles Poli 2010
In this letter, we demonstrate that a non-Hermitian Random Matrix description can account for both spectral and spatial statistics of resonance states in a weakly open chaotic wave system with continuously distributed losses. More specifically, the s tatistics of resonance states in an open 2D chaotic microwave cavity are investigated by solving the Maxwell equations with lossy boundaries subject to Ohmic dissipation. We successfully compare the statistics of its complex-valued resonance states and associated widths with analytical predictions based on a non-Hermitian effective Hamiltonian model defined by a finite number of fictitious open channels.
We discuss some properties of the generalized entropies, called Renyi entropies and their application to the case of continuous distributions. In particular it is shown that these measures of complexity can be divergent, however, their differences ar e free from these divergences thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e. to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e. no classical limit can be defined. Numerical simulations on a one dimensional disordered system corroborate our expectations.
We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population i s fully synchronized and the other is in a state of partial synchronization (PS) as well as generalized chimera states, where both populations are in PS, but with different levels of synchronization. Symmetric macroscopic states are also present, ranging from quasi-periodic motions, to collective chaos, from splay states to population anti-phase partial synchronization. We then investigate the influence disorder, random link removal or noise, on the dynamics of collective solutions in this model. As a result, we observe that broken symmetry chimera-like states, with both populations partially synchronized, persist up to 80 % of broken links and up to noise amplitudes 8 % of threshold-reset distance. Furthermore, the introduction of disorder on symmetric chaotic state has a constructive effect, namely to induce the emergence of chimera-like states at intermediate dilution or noise level.
In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into t wo dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure which is characterized by strong intra connections and weak inter connections. Furthermore, the connection strengths follow a power law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا