ترغب بنشر مسار تعليمي؟ اضغط هنا

On Renyi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems

60   0   0.0 ( 0 )
 نشر من قبل Dr. Imre Varga
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss some properties of the generalized entropies, called Renyi entropies and their application to the case of continuous distributions. In particular it is shown that these measures of complexity can be divergent, however, their differences are free from these divergences thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e. to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e. no classical limit can be defined. Numerical simulations on a one dimensional disordered system corroborate our expectations.

قيم البحث

اقرأ أيضاً

We investigate the scaling of the Renyi $alpha$-entropies in one-dimensional gapped quantum spin models. We show that the block entropies with $alpha > 2$ violate the area law monotonicity and exhibit damped oscillations. Depending on the existence o f a factorized ground state, the oscillatory behavior occurs either below factorization or it extends indefinitely. The anomalous scaling corresponds to an entanglement-driven order that is independent of ground-state degeneracy and is revealed by a nonlocal order parameter defined as the sum of the single-copy entanglement over all blocks.
Proposed to study the dynamics of physiological systems in which the evolution depends on the state in a previous time, the Mackey-Glass model exhibits a rich variety of behaviors including periodic or chaotic solutions in vast regions of the paramet er space. This model can be represented by a dynamical system with a single variable obeying a delayed differential equation. Since it is infinite dimensional requires to specify a real function in a finite interval as an initial condition. Here, the dynamics of the Mackey-Glass model is investigated numerically using a scheme previously validated with experimental results. First, we explore the parameter space and describe regions in which solutions of different periodic or chaotic behaviors exist. Next, we show that the system presents regions of multistability, i.e. the coexistence of different solutions for the same parameter values but for different initial conditions. We remark the coexistence of periodic solutions with the same period but consisting of several maximums with the same amplitudes but in different orders. We reveal that the multibistability is not evenly distribute in the parameter space. To quantify its distribution we introduce families of representative initial condition functions and evaluate the abundance of the coexisting solutions. These findings contribute to describe the complexity of this system and explore the possibility of possible applications such as to store or to code digital information.
We investigate the nonequilibrium dynamics of the one-dimension Aubry-Andr{e}-Harper model with $p$-wave superconductivity by changing the potential strength with slow and sudden quench. Firstly, we study the slow quench dynamics from localized phase to critical phase by linearly decreasing the potential strength $V$. The localization length is finite and its scaling obeys the Kibble-Zurek mechanism. The results show that the second-order phase transition line shares the same critical exponent $z u$, giving the correlation length $ u=0.997$ and dynamical exponent $z=1.373$, which are different from the Aubry-Andr{e} model. Secondly, we also study the sudden quench dynamics between three different phases: localized phase, critical phase, and extended phase. In the limit of $V=0$ and $V=infty$, we analytically study the sudden quench dynamics via the Loschmidt echo. The results suggest that, if the initial state and the post-quench Hamiltonian are in different phases, the Loschmidt echo vanishes at some time intervals. Furthermore, we found that, if the initial value is in the critical phase, the direction of the quench is the same as one of the two limits mentioned before, and similar behaviors will occur.
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا