ترغب بنشر مسار تعليمي؟ اضغط هنا

Chimera states in pulse coupled neural networks: the influence of dilution and noise

68   0   0.0 ( 0 )
 نشر من قبل Alessandro Torcini Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population is fully synchronized and the other is in a state of partial synchronization (PS) as well as generalized chimera states, where both populations are in PS, but with different levels of synchronization. Symmetric macroscopic states are also present, ranging from quasi-periodic motions, to collective chaos, from splay states to population anti-phase partial synchronization. We then investigate the influence disorder, random link removal or noise, on the dynamics of collective solutions in this model. As a result, we observe that broken symmetry chimera-like states, with both populations partially synchronized, persist up to 80 % of broken links and up to noise amplitudes 8 % of threshold-reset distance. Furthermore, the introduction of disorder on symmetric chaotic state has a constructive effect, namely to induce the emergence of chimera-like states at intermediate dilution or noise level.



قيم البحث

اقرأ أيضاً

We study with numerical simulation the possible limit behaviors of synchronous discrete-time deterministic recurrent neural networks composed of N binary neurons as a function of a networks level of dilution and asymmetry. The network dilution measur es the fraction of neuron couples that are connected, and the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric. For each given neural network, we study the dynamical evolution of all the different initial conditions, thus characterizing the full dynamical landscape without imposing any learning rule. Because of the deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network. For each network, we then determine the convergence times, the limit cycles length, the number of attractors, and the sizes of the attractors basin. We show that there are two network structures that maximize the number of possible limit behaviors. The first optimal network structure is fully-connected and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric. The latter optimal is similar to what observed in different biological neuronal circuits. These observations lead us to hypothesize that independently from any given learning model, an efficient and effective biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop a connectivity structure similar to one of the optimal networks we found.
The thermodynamic and retrieval properties of the Blume-Emery-Griffiths neural network with synchronous updating and variable dilution are studied using replica mean-field theory. Several forms of dilution are allowed by pruning the different types o f couplings present in the Hamiltonian. The appearance and properties of two-cycles are discussed. Capacity-temperature phase diagrams are derived for several values of the pattern activity. The results are compared with those for sequential updating. The effect of self-coupling is studied. Furthermore, the optimal combination of dilution parameters giving the largest critical capacity is obtained.
The effects of a variable amount of random dilution of the synaptic couplings in Q-Ising multi-state neural networks with Hebbian learning are examined. A fraction of the couplings is explicitly allowed to be anti-Hebbian. Random dilution represents the dying or pruning of synapses and, hence, a static disruption of the learning process which can be considered as a form of multiplicative noise in the learning rule. Both parallel and sequential updating of the neurons can be treated. Symmetric dilution in the statics of the network is studied using the mean-field theory approach of statistical mechanics. General dilution, including asymmetric pruning of the couplings, is examined using the generating functional (path integral) approach of disordered systems. It is shown that random dilution acts as additive gaussian noise in the Hebbian learning rule with a mean zero and a variance depending on the connectivity of the network and on the symmetry. Furthermore, a scaling factor appears that essentially measures the average amount of anti-Hebbian couplings.
The dynamics and the stationary states of an exactly solvable three-state layered feed-forward neural network model with asymmetric synaptic connections, finite dilution and low pattern activity are studied in extension of a recent work on a recurren t network. Detailed phase diagrams are obtained for the stationary states and for the time evolution of the retrieval overlap with a single pattern. It is shown that the network develops instabilities for low thresholds and that there is a gradual improvement in network performance with increasing threshold up to an optimal stage. The robustness to synaptic noise is checked and the effects of dilution and of variable threshold on the information content of the network are also established.
110 - D. Bolle , R. Heylen 2007
The inclusion of a macroscopic adaptive threshold is studied for the retrieval dynamics of both layered feedforward and fully connected neural network models with synaptic noise. These two types of architectures require a different method to be solve d numerically. In both cases it is shown that, if the threshold is chosen appropriately as a function of the cross-talk noise and of the activity of the stored patterns, adapting itself automatically in the course of the recall process, an autonomous functioning of the network is guaranteed. This self-control mechanism considerably improves the quality of retrieval, in particular the storage capacity, the basins of attraction and the mutual information content.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا