ﻻ يوجد ملخص باللغة العربية
We compare the response of five different models of two interacting electrons in a quantum dot to an external short lived radial excitation that is strong enough to excite the system well beyond the linear response regime. The models considered describe the Coulomb interaction between the electrons in different ways ranging from mean-field approaches to configuration interaction (CI) models, where the two-electron Hamiltonian is diagonalized in a large truncated Fock space. The radially symmetric excitation is selected in order to severely put to test the different approaches to describe the interaction and correlations of an electron system in a nonequilibrium state. As can be expected for the case of only two electrons none of the mean-field models can in full details reproduce the results obtained by the CI model. Nonetheless, some linear and nonlinear characteristics are reproduced reasonably well. All the models show activation of an increasing number of collective modes as the strength of the excitation is increased. By varying slightly the confinement potential of the dot we observe how sensitive the properties of the excitation spectrum are to the Coulomb interaction and its correlation effects. In order to approach closer the question of nonlinearity we solve one of the mean-field models directly in a nonlinear fashion without resorting to iterations.
Emission spectra of quantum dot arrays in zero-dimensional microcavities are studied theoretically, and it is shown that they are determined by the competition between the formation of the collective superradiant mode and inhomogeneous broadening. Th
The large arrays of magnetic dots are the building blocks of magnonic crystals and the emerging bit patterned media for future recording technology. In order to fully utilize the functionalities of high density magnetic nanodots, a method for the sel
Transition metal dichalcogenide (TMD) monolayers are interesting materials in part because of their strong spin-orbit coupling. This leads to intrinsic spin-splitting of opposite signs in opposite valleys, so the valleys are intrinsically spin-polari
We show that the spins of all electrons, each confined in a quantum dot of an (In,Ga)As/GaAs dot ensemble, can be driven into a single mode of precession about a magnetic field. This regime is achieved by allowing only a single mode within the electr
We experimentally demonstrate that both quasi-linear and nonlinear self-localized bullet modes of magnetization auto-oscillation can be excited by dc current in the nano-gap spin Hall nano-oscillator, by utilizing the geometry with an extended gap. T