ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective modes of quantum dot ensembles in microcavities

184   0   0.0 ( 0 )
 نشر من قبل M. M. Glazov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emission spectra of quantum dot arrays in zero-dimensional microcavities are studied theoretically, and it is shown that they are determined by the competition between the formation of the collective superradiant mode and inhomogeneous broadening. The random sources method for the calculation of photoluminescence spectra under a non-resonant pumping is developed, and a microscopic justification of the random sources method within a framework of the standard diagram technique is given. The emission spectra of a microcavity are analyzed with allowance for the spread of exciton states energies caused by an inhomogeneous distribution of quantum dots and a tunneling between them. It is demonstrated that in the case of a strong tunneling coupling the luminescence spectra are sensitive to the geometric positions of the dots, and the collective mode can, under certain conditions, be stabilized by the random tunnel junctions.



قيم البحث

اقرأ أيضاً

343 - B.N. Narozhny , I.V. Gornyi , 2020
Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to electronic transport. Here we provide a consistent, unified calculation of the dispersion relations of the hydrodynamic collective modes in graphene. Taking int o account viscous effects, we show that the hydrodynamic sound mode in graphene becomes overdamped at sufficiently large momentum scales. Extending the linearized theory beyond the hydrodynamic regime, we connect the diffusive hydrodynamic charge density fluctuations with plasmons.
We compare the response of five different models of two interacting electrons in a quantum dot to an external short lived radial excitation that is strong enough to excite the system well beyond the linear response regime. The models considered descr ibe the Coulomb interaction between the electrons in different ways ranging from mean-field approaches to configuration interaction (CI) models, where the two-electron Hamiltonian is diagonalized in a large truncated Fock space. The radially symmetric excitation is selected in order to severely put to test the different approaches to describe the interaction and correlations of an electron system in a nonequilibrium state. As can be expected for the case of only two electrons none of the mean-field models can in full details reproduce the results obtained by the CI model. Nonetheless, some linear and nonlinear characteristics are reproduced reasonably well. All the models show activation of an increasing number of collective modes as the strength of the excitation is increased. By varying slightly the confinement potential of the dot we observe how sensitive the properties of the excitation spectrum are to the Coulomb interaction and its correlation effects. In order to approach closer the question of nonlinearity we solve one of the mean-field models directly in a nonlinear fashion without resorting to iterations.
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
182 - H. Kumano , S. Ekuni , H. Nakajima 2009
Interference of a single photon generated from a single quantum dot is observed between two photon polarization modes. Each emitted single photon has two orthogonal polarization modes associated with the solid-state single photon source, in which two non-degenerate neutral exciton states are involved. The interference between the two modes takes place only under the condition that the emitted photon is free from which-mode information.
The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a $pi$-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random phase approximat ion. The effect of different kinds of disorder, such as geometric and chemical disorder, are included in our calculations. We highlight the main differences of GALs with respect to single-layer graphene (SLG). Our results show that, in addition to the well-understood bulk plasmon in doped samples, inter-band plasmons appear in GALs. We further show that the static screening properties of undoped and doped GALs are quantitatively different from SLG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا