ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate that both quasi-linear and nonlinear self-localized bullet modes of magnetization auto-oscillation can be excited by dc current in the nano-gap spin Hall nano-oscillator, by utilizing the geometry with an extended gap. The quasi-linear mode is stable at low driving currents, while the bullet mode is additionally excited at larger currents, and becomes increasingly dominant with increasing current. Time-resolved measurements show that the formation of the bullet mode is delayed relative to the quasi-linear mode by up to 100 nanoseconds, demonstrating that the mechanisms of the formation of these modes are fundamentally different. We discuss the relationship between the observed behaviors and the formation of an unstable nonlinear magnon condensate.
Spin Hall nano-oscillators (SHNOs) utilize pure spin currents to drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and sometimes mu
Spin waves (SWs), the collective precessional motion of spins in a magnetic system, have been proposed as a promising alternative system with low-power consumption for encoding information. Spin Hall nano-oscillator (SHNO), a new-type spintronic nano
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients
Spin Hall oscillators (SHO) are promising candidates for the generation, detection and amplification of high frequency signals, that are tunable through a wide range of operating frequencies. They offer to be read out electrically, magnetically and o
We experimentally study the dynamical modes excited by spin current in Spin Hall nano-oscillators based on the Pt/[Co/Ni] multilayers with perpendicular magnetic anisotropy. Both propagating spin wave and localized solitonic modes of the oscillation