ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Search by a Laser Ising Machine with Gradual Pumping or Coupling

44   0   0.0 ( 0 )
 نشر من قبل Kenta Takata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two operational schemes for a coherent Ising machine based on an injection-locked laser network. These schemes gradually increase the pumping rate or the mutual coupling among the slave lasers. We numerically simulate the two schemes against a data search problem implemented with the Ising model in cubic graphs without frustration. We show the machine can achieve a better success probability and effective computational time to find a target/ground state with these gradual schemes than those with the abrupt introduction of the mutual injection which has been studied previously. The computational time simulated with typical parameters is almost constant up to the problem size M = 200 and turns into a nearly linear scale holding up to M = 1000.

قيم البحث

اقرأ أيضاً

We show that the nonlinear stochastic dynamics of a measurement-feedback-based coherent Ising machine (MFB-CIM) in the presence of quantum noise can be exploited to sample degenerate ground and low-energy spin configurations of the Ising model. We fo rmulate a general discrete-time Gaussian-state model of the MFB-CIM which faithfully captures the nonlinear dynamics present at and above system threshold. This model overcomes the limitations of both mean-field models, which neglect quantum noise, and continuous-time models, which assume long photon lifetimes. Numerical simulations of our model show that when the MFB-CIM is operated in a quantum-noise-dominated regime with short photon lifetimes (i.e., low cavity finesse), homodyne monitoring of the system can efficiently produce samples of low-energy Ising spin configurations, requiring many fewer roundtrips to sample than suggested by established high-finesse, continuous-time models. We find that sampling performance is robust to, or even improved by, turning off or altogether reversing the sign of the parametric drive, but performance is critically reduced in the absence of optical nonlinearity. For the class of MAX-CUT problems with binary-signed edge weights, the number of roundtrips sufficient to fully sample all spin configurations up to the first-excited Ising energy, including all degeneracies, scales as $1.08^N$. At a problem size of $N = 100$ with a few dozen (median of 20) such desired configurations per instance, we have found median sufficient sampling times of $6times10^6$ roundtrips; in an experimental implementation of an MFB-CIM with a 10 GHz repetition rate, this corresponds to a wall-clock sampling time of 0.6 ms.
Statistical spin dynamics plays a key role to understand the working principle for novel optical Ising machines. Here we propose the gauge transformations for spatial photonic Ising machine, where a single spatial phase modulator simultaneously encod es spin configurations and programs interaction strengths. Thanks to gauge transformation, we experimentally evaluate the phase diagram of high-dimensional spin-glass equilibrium system with $100$ fully-connected spins. We observe the presence of paramagnetic, ferromagnetic as well as spin-glass phases and determine the critical temperature $T_c$ and the critical probability ${{p}_{c}}$ of phase transitions, which agree well with the mean-field theory predictions. Thus the approximation of the mean-field model is experimentally validated in the spatial photonic Ising machine. Furthermore, we discuss the phase transition in parallel with solving combinatorial optimization problems during the cooling process and identify that the spatial photonic Ising machine is robust with sufficient many-spin interactions, even when the system is associated with the optical aberrations and the measurement uncertainty.
We have recently demonstrated that optical pumping methods combined with photoassociation of ultra-cold atoms can produce ultra-cold and dense samples of molecules in their absolute rovibronic ground state. More generally, both the external and inter nal degrees of freedom can be cooled by addressing selected rovibrational levels on demand. Here, we recall the basic concepts and main steps of our experiments, including the excitation schemes and detection techniques we use to achieve the rovibrational cooling of Cs2 molecules. In addition, we present the determination of formation pathways and a theoretical analysis explaining the experimental observations. These simulations improves the spectroscopic knowledge required to transfer molecules to any desired rovibrational level.
85 - Yongguan Ke , Shi Hu , Bo Zhu 2020
Adiabatic quantum pumping in one-dimensional lattices is extended by adding a tilted potential to probe better topologically nontrivial bands. This extension leads to almost perfectly quantized pumping for an arbitrary initial state selected in a ban d of interest, including Bloch states. In this approach, the time variable offers not only a synthetic dimension as in the case of the Thouless pumping, but it assists also in the uniform sampling of all momenta due to the Bloch oscillations induced by the tilt. The quantized drift of Bloch oscillations is determined by a one-dimensional time integral of the Berry curvature, being effectively an integer multiple of the topological Chern number in the Thouless pumping. Our study offers a straightforward approach to yield quantized pumping, and it is useful for probing topological phase transitions.
Finding the ground states of the Ising Hamiltonian [1] maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence, and social network. So far no efficient classical and quantum algorithm is known for these problems, and intensive research is focused on creating physical systems - Ising machines - capable of finding the absolute or approximate ground states of the Ising Hamiltonian [2-6]. Here we report a novel Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections [7]. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programed the smallest non-deterministic polynomial time (NP)- hard Ising problem on the machine, and in 1000 runs of the machine no computational error was detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا