ترغب بنشر مسار تعليمي؟ اضغط هنا

Network of Time-Multiplexed Optical Parametric Oscillators as a Coherent Ising Machine

135   0   0.0 ( 0 )
 نشر من قبل Alireza Marandi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding the ground states of the Ising Hamiltonian [1] maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence, and social network. So far no efficient classical and quantum algorithm is known for these problems, and intensive research is focused on creating physical systems - Ising machines - capable of finding the absolute or approximate ground states of the Ising Hamiltonian [2-6]. Here we report a novel Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections [7]. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programed the smallest non-deterministic polynomial time (NP)- hard Ising problem on the machine, and in 1000 runs of the machine no computational error was detected.



قيم البحث

اقرأ أيضاً

We show that the nonlinear stochastic dynamics of a measurement-feedback-based coherent Ising machine (MFB-CIM) in the presence of quantum noise can be exploited to sample degenerate ground and low-energy spin configurations of the Ising model. We fo rmulate a general discrete-time Gaussian-state model of the MFB-CIM which faithfully captures the nonlinear dynamics present at and above system threshold. This model overcomes the limitations of both mean-field models, which neglect quantum noise, and continuous-time models, which assume long photon lifetimes. Numerical simulations of our model show that when the MFB-CIM is operated in a quantum-noise-dominated regime with short photon lifetimes (i.e., low cavity finesse), homodyne monitoring of the system can efficiently produce samples of low-energy Ising spin configurations, requiring many fewer roundtrips to sample than suggested by established high-finesse, continuous-time models. We find that sampling performance is robust to, or even improved by, turning off or altogether reversing the sign of the parametric drive, but performance is critically reduced in the absence of optical nonlinearity. For the class of MAX-CUT problems with binary-signed edge weights, the number of roundtrips sufficient to fully sample all spin configurations up to the first-excited Ising energy, including all degeneracies, scales as $1.08^N$. At a problem size of $N = 100$ with a few dozen (median of 20) such desired configurations per instance, we have found median sufficient sampling times of $6times10^6$ roundtrips; in an experimental implementation of an MFB-CIM with a 10 GHz repetition rate, this corresponds to a wall-clock sampling time of 0.6 ms.
We present the quantum theory of coherent Ising machines based on networks of degenerate optical parametric oscillators (DOPOs). In a simple model consisting of two coupled DOPOs, both positive-$P$ representation and truncated Wigner representation predict quantum correlation and inseparability between the two DOPOs in spite of the open-dissipative nature of the system. Here, we apply the truncated Wigner representation method to coherent Ising machines with thermal, vacuum, and squeezed reservoir fields. We find that the probability of finding the ground state of a one-dimensional Ising model increases substantially as a result of reducing excess thermal noise and squeezing the incident vacuum fluctuation on the out-coupling port.
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic e quations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
We explore the coherent dynamics in a small network of three coupled parametric oscillators and demonstrate the effect of frustration on the persistent beating between them. Since a single-mode parametric oscillator represents an analog of a classica l Ising spin, networks of coupled parametric oscillators are considered as simulators of Ising spin models, aiming to efficiently calculate the ground state of an Ising network - a computationally hard problem. However, the coherent dynamics of coupled parametric oscillators can be considerably richer than that of Ising spins, depending on the nature of the coupling between them (energy preserving or dissipative), as was recently shown for two coupled parametric oscillators. In particular, when the energy-preserving coupling is dominant, the system displays everlasting coherent beats, transcending the Ising description. Here, we extend these findings to three coupled parametric oscillators, focusing in particular on the effect of frustration of the dissipative coupling. We theoretically analyze the dynamics using coupled nonlinear Mathieus equations, and corroborate our theoretical findings by a numerical simulation that closely mimics the dynamics of the system in an actual experiment. Our main finding is that frustration drastically modifies the dynamics. While in the absence of frustration the system is analogous to the two-oscillator case, frustration reverses the role of the coupling completely, and beats are found for small energy-preserving couplings.
Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6 % of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا