ﻻ يوجد ملخص باللغة العربية
We report the results of a search for spontaneous magnetism due to a time reversal symmetry breaking phase in the superconducting state of (110)-oriented YBCO films, expected near the surface in this geometry. Zero field and weak transverse field measurements performed using the low-energy muon spin rotation technique with muons implanted few nm inside optimally-doped YBCO-(110) films show no appearance of spontaneous magnetic fields below the superconducting temperature down to 2.9 K. Our results give an upper limit of ~0.02 mT for putative spontaneous internal fields.
Weak spontaneous magnetic fields are observed near the surface of YBCO films using Beta-detected Nuclear Magnetic Resonance. Below Tc, the magnetic field distribution in a silver film evaporated onto the superconductor shows additional line broadenin
We report point contact Andreev Reflection (PCAR) measurements on a high-quality single crystal of the non-centrosymmetric superconductor Re6Zr. We observe that the PCAR spectra can be fitted by taking two isotropic superconducting gaps with Delta_1
Exotic superconductors, such as high T$_C$, topological, and heavy-fermion superconductors, require phase sensitive measurements to determine the underlying pairing. Here we investigate the proximity-induced superconductivity in nanowires of SnTe, wh
The symmetry properties of the order parameter characterize different phases of unconventional superconductors. In the case of the heavy-fermion superconductor UPt$_3$, a key question is whether its multiple superconducting phases preserve or break t
A novel superconducting state under the broken time-reversal symmetry is studied in conventional phonon-mediated superconductors. By solving the Eliashberg equation self-consistently with the mass renormalization effect, it is found that the even- an