ﻻ يوجد ملخص باللغة العربية
A novel superconducting state under the broken time-reversal symmetry is studied in conventional phonon-mediated superconductors. By solving the Eliashberg equation self-consistently with the mass renormalization effect, it is found that the even- and odd-frequency components of the order parameter coexist in the bulk system as a consequence of the broken time-reversal symmetry. This finding would direct more attention to the odd-frequency pairing that affects physical quantities, especially in strong coupling superconductors.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that do
Among unconventional superconductors, Sr$_2$RuO$_4$ has become a benchmark for experimentation and theoretical analysis because its normal-state electronic structure is known with exceptional precision, and because of experimental evidence that its s
We consider a buckled quantum spin Hall insulator (QSHI), such as silicene, proximity-coupled to a conventional spin-singlet, s-wave superconductor. Even limiting the discussion to the disorder-robust s-wave pairing symmetry, we find both odd-frequen