ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson Detection of Time Reversal Symmetry Broken Superconductivity in SnTe Nanowires

366   0   0.0 ( 0 )
 نشر من قبل James Williams
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exotic superconductors, such as high T$_C$, topological, and heavy-fermion superconductors, require phase sensitive measurements to determine the underlying pairing. Here we investigate the proximity-induced superconductivity in nanowires of SnTe, where an $spm is^{prime}$ superconducting state is produced that lacks the time-reversal and valley-exchange symmetry of the parent SnTe. This effect, in conjunction with a ferroelectric distortion of the lattice at low temperatures, results in a marked alteration of the properties of Josephson junctions fabricated using SnTe nanowires. This work establishes the existence of a ferroelectric transition in SnTe nanowires and elucidates the role of ferroelectric domain walls on the flow of supercurrent through SnTe weak links. We detail two unique characteristics of these junctions: an asymmetric critical current in the DC Josephson effect and a prominent second harmonic in the AC Josephson effect. Each reveals the broken time-reversal symmetry in the junction. The novel $spm is^{prime}$ superconductivity and the new Josephson effects can be used to investigate fractional vortices [1,2], topological superconductivity in multiband materials [3-5], and new types of Josephson-based devices in proximity-induced multiband and ferroelectric superconductors [6,7].

قيم البحث

اقرأ أيضاً

We report point contact Andreev Reflection (PCAR) measurements on a high-quality single crystal of the non-centrosymmetric superconductor Re6Zr. We observe that the PCAR spectra can be fitted by taking two isotropic superconducting gaps with Delta_1 ~ 0.79 meV and Delta_2 ~ 0.22 meV respectively, suggesting that there are at least two bands which contribute to superconductivity. Combined with the observation of time reversal symmetry breaking at the superconducting transition from muon spin relaxation measurements (Phys. Rev. Lett. 112, 107002 (2014)), our results imply an unconventional superconducting order in this compound: A multiband singlet state that breaks time reversal symmetry or a triplet state dominated by interband pairing.
We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onse t of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
131 - V. Grinenko , R. Sarkar , K. Kihou 2018
In general, magnetism and superconductivity are antagonistic to each other. However, there are several families of superconductors, in which superconductivity may coexist with magnetism, and only a few examples are known, when superconductivity itsel f induces spontaneous magnetism. The most known compounds are Sr$_2$RuO$_4$ and some noncentrosymmetric superconductors. Here, we report the finding of a narrow dome of a novel $s+is$ superconducting (SC) phase with broken time-reversal symmetry (BTRS) inside the broad $s$-wave SC region of the centrosymmetric multiband superconductor Ba$_{rm 1-x}$K$_{rm x}$Fe$_2$As$_2$ ($0.7 lesssim x lesssim 0.85$). We observe spontaneous magnetic fields inside this dome using the muon spin relaxation ($mu$SR) technique. Furthermore, our detailed specific heat study reveals that the BTRS dome appears very close to a change in the topology of the Fermi surface (Lifshitz transition). With this, we experimentally demonstrate the emergence of a novel quantum state due to topological changes of the electronic system.
101 - G.M.Luke , Y.Fudamoto , K.M.Kojima 1998
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i n this material is characterized by the breaking of time-reversal symmetry. These results, combined with other symmetry considerations, suggest that superconductivity in Sr2RuO4 is of p-wave (odd-parity) type, analogous to superfluid 3He.
264 - G. M. Pang , Z. Y. Nie , A. Wang 2018
The noncentrosymmetric superconductor Re$_6$Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re$_6$Zr single c rystals by measuring the magnetic penetration depth shift $Deltalambda(T)$ and electronic specific heat $C_e(T)$. $Deltalambda(T)$ exhibits an exponential temperature dependence behavior for $T~ll~T_c$, which indicates a fully-open superconducting gap. Our analysis shows that a single gap $s$-wave model is sufficient to describe both the superfluid density $rho_s(T)$ and $C_e(T)$ results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully-gapped superconductivity in Re$_6$Zr with moderate coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا