ﻻ يوجد ملخص باللغة العربية
We demonstrate and interpret a technique of laser-induced formation of thin metallic films using alkali atoms on the window of a dense-vapour cell. We show that this intriguing photo-stimulated process originates from the adsorption of Cs atoms via the neutralisation of Cs$^+$ ions by substrate electrons. The Cs$^+$ ions are produced via two-photon absorption by excited Cs atoms very close to the surface, which enables the transfer of the laser spatial intensity profile to the film thickness. An initial decrease of the surface work function is required to guarantee Cs$^+$ neutralisation and results in a threshold in the vapour density. This understanding of the film growth mechanism may facilitate the development of new techniques of laser-controlled lithography, starting from thermal vapours.
We develop the theory of propagation of laser wave in a gas of two-level atoms (with an optical transition frequency $omega^{}_0$) under the condition of inhomogeneous Doppler broadening, considering the self-consistent solution of the Maxwell-Bloch
We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltz
We describe measurements demonstrating laser cooling of an atomic gas by means of collisional redistribution of radiation. The experiment uses rubidium atoms in the presence of several hundred bar of argon buffer gas pressure. Frequent collisions in
When graphene is close to charge neutrality, its energy landscape is highly inhomogeneous, forming a sea of electron-like and hole-like puddles, which determine the properties of graphene at low carrier density. However, the details of the puddle for
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the