ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce transformations of deep rectifier networks, enabling the conversion of deep rectifier networks into shallow rectifier networks. We subsequently prove that any rectifier net of any depth can be represented by a maximum of a number of functions that can be realized by a shallow network with a single hidden layer. The transformations of both deep rectifier nets and deep residual nets are conducted to demonstrate the advantages of the residual nets over the conventional neural nets and the advantages of the deep neural nets over the shallow neural nets. In summary, for two rectifier nets with different depths but with same total number of hidden units, the corresponding single hidden layer representation of the deeper net is much more complex than the corresponding single hidden representation of the shallower net. Similarly, for a residual net and a conventional rectifier net with the same structure except for the skip connections in the residual net, the corresponding single hidden layer representation of the residual net is much more complex than the corresponding single hidden layer representation of the conventional net.
Two networks are equivalent if they produce the same output for any given input. In this paper, we study the possibility of transforming a deep neural network to another network with a different number of units or layers, which can be either equivale
We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from qui
While Graph Neural Networks (GNNs) are powerful models for learning representations on graphs, most state-of-the-art models do not have significant accuracy gain beyond two to three layers. Deep GNNs fundamentally need to address: 1). expressivity ch
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure o