ﻻ يوجد ملخص باللغة العربية
Using advanced ab-initio calculations, we describe the formation and confinement of a two-dimensional electron gas in short-period ($simeq$4 nm) Nb-doped SrTiO$_3$ superlattices as function of Nb doping. We predict complete two-dimensional confinement for doping concentrations higher than 70%. In agreement with previous observations, we find a large thermopower enhancement at room temperature. However, this effect is primarily determined by dilution of the mobile charge over a multitude of weakly occupied bands. As a general rule, we conclude that thermopower in similar heterostructures will be more enhanced by weak, rathern than tight spatial confinement.
Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superla
A number of recent studies indicate that the charge conduction of the LaAlO$_3$/SrTiO$_3$ interface at low temperature is confined to filaments which are linked to structural domain walls in the SrTiO$_3$ with drastic consequences for example for the
Novel electronic systems forming at oxide interfaces comprise a class of new materials with a wide array of potential applications. A high mobility electron system forms at the LaAlO$_3$/SrTiO$_3$ interface and, strikingly, both superconducts and dis
Nb-doped SrTiO$_{3}$ epitaxial thin films have been prepared on (001) SrTiO$_{3}$ substrates using pulsed laser deposition. A high substrate temperature ($>1000^{circ}{C}$) was found to be necessary to achieve 2-dimensional growth. Atomic force micro
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable