ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial growth and transport properties of Nb-doped SrTiO$_{3}$ thin films

227   0   0.0 ( 0 )
 نشر من قبل Kei Takahashi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nb-doped SrTiO$_{3}$ epitaxial thin films have been prepared on (001) SrTiO$_{3}$ substrates using pulsed laser deposition. A high substrate temperature ($>1000^{circ}{C}$) was found to be necessary to achieve 2-dimensional growth. Atomic force microscopy reveals atomically flat surfaces with 3.9 AA $ $ steps. The films show a metallic behavior, residual resistivity ratios between 10 and 100, and low residual resistivity of the order of 10$^{-4}$$Omega$cm. At 0.3 K, a sharp superconducting transition, reaching zero resistance, is observed.

قيم البحث

اقرأ أيضاً

We investigate the possibility of multi-band superconductivity in SrTiO$_{3}$ films and interfaces using a two-dimensional two-band model. In the undoped compound, one of the bands is occupied whereas the other is empty. As the chemical potential shi fts due to doping by negative charge carriers or application of an electric field, the second band becomes occupied, giving rise to a strong enhancement of the transition temperature and a sharp feature in the gap functions, which is manifested in the local density of states spectrum. By comparing our results with tunneling experiments in Nb-doped SrTiO$_{3}$, we find that intra-band pairing dominates over inter-band pairing, unlike other known multi-band superconductors. Given the similarities with the value of the transition temperature and with the band structure of LaAlO$_{3}$/SrTiO$_{3}$ heterostructures, we speculate that the superconductivity observed in SrTiO$_{3}$ interfaces may be similar in nature to that of bulk SrTiO$_{3}$, involving multiple bands with distinct electronic occupations.
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO$_3$ films with low-temperature mobility exceeding 42,000 cm$^2$V$^{-1}$s$^ {-1}$ at low carrier density of 3 x 10$^{17}$ cm$^{-3}$ were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition (LT) where the third band becomes occupied, revealing dominant intra-band scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature-dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- vs intra-band scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO$_3$.
148 - S. D. Bu 2002
We report the growth and properties of epitaxial MgB2 thin films on (0001) Al2O3 substrates. The MgB2 thin films were prepared by depositing boron films via RF magnetron sputtering, followed by a post-deposition anneal at 850C in magnesium vapor. X-r ay diffraction and cross-sectional TEM reveal that the epitaxial MgB2 films are oriented with their c-axis normal to the (0001) Al2O3 substrate and a 30 degree rotation in the ab-plane with respect to the substrate. The critical temperature was found to be 35 K and the anisotropy ratio, Hc2(parallel to the film) / Hc2(pendicular to the film), about 3 at 25K. The critical current densities at 4.2 K and 20 K (at 1 T perpendicular magnetic field) are 5x10E6 A/cm2 and 1x10E6 A/cm2, respectively. The controlled growth of epitaxial MgB2 thin films opens a new avenue in both understanding superconductivity in MgB2 and technological applications.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
A theoretical framework is developed to describe experiments on the structure of epitaxial thin films, particularly niobium on sapphire. We extend the hypothesis of dynamical scaling to apply to the structure of thin films from its conventional appli cation to simple surfaces. We then present a phenomenological continuum theory that provides a good description of the observed scattering and the measured exponents. Finally the results of experiment and theory are compared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا