ﻻ يوجد ملخص باللغة العربية
Novel electronic systems forming at oxide interfaces comprise a class of new materials with a wide array of potential applications. A high mobility electron system forms at the LaAlO$_3$/SrTiO$_3$ interface and, strikingly, both superconducts and displays indications of hysteretic magnetoresistance. An essential step for device applications is establishing the ability to vary the electronic conductivity of the electron system by means of a gate. We have fabricated metallic top gates above a conductive interface to vary the electron density at the interface. By monitoring capacitance and electric field penetration, we are able to tune the charge carrier density and establish that we can completely deplete the metallic interface with small voltages. Moreover, at low carrier densities, the capacitance is significantly enhanced beyond the geometric capacitance for the structure. In the same low density region, the metallic interface overscreens an external electric field. We attribute these observations to a negative compressibility of the electronic system at the interface. Similar phenomena have been observed previously in semiconducting two-dimensional electronic systems. The observed compressibility result is consistent with the interface containing a system of mobile electrons in two dimensions.
We investigate the effects of two electronic bands at the negative electronic compressibility (NEC) in a two-dimensional electron gas (2DEG). We use a simple homogeneous model with Coulombic interactions and first-order multi-band coupling to examine
Multiple experiments have observed a sharp transition in the band structure of LaAlO$_3$/SrTiO$_3$ (001) interfaces as a function of applied gate voltage. This Lifshitz transition, between a single occupied band at low electron density and multiple o
A number of recent studies indicate that the charge conduction of the LaAlO$_3$/SrTiO$_3$ interface at low temperature is confined to filaments which are linked to structural domain walls in the SrTiO$_3$ with drastic consequences for example for the
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable