ﻻ يوجد ملخص باللغة العربية
Observations of flowing granular matter have suggested that same-material tribocharging de- pends on particle size, rendering large grains positive and small ones negative. Models assuming the transfer of trapped electrons can explain this, but so far have not been validated. Tracking individual grains in an electric field, we show quantitatively that charge is transferred based on size between materially identical grains. However, the surface density of trapped electrons, measured independently by thermoluminescence techniques, is orders of magnitude too small to account for the scale of charge transferred. This suggests that another negatively charged species, such as ions, is responsible.
By rigorously accounting for mesoscale spatial correlations in donor/acceptor surface properties, we develop a scale-spanning model for same-material tribocharging. We find that mesoscale correlations affect not only the magnitude of charge transfer
Contact electrification of dielectric grains forms the basis for a myriad of physical phenomena. However, even the basic aspects of collisional charging between grains are still unclear. Here we develop a new experimental method, based on acoustic le
We investigate the system size dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous
In this work, we study the $k$-median clustering problem with an additional equal-size constraint on the clusters, from the perspective of parameterized preprocessing. Our main result is the first lossy ($2$-approximate) polynomial kernel for this pr
Many experiments over the past half century have shown that, for a range of protocols, granular materials compact under pressure and repeated small disturbances. A recent experiment on cyclically sheared spherical grains showed significant compaction