ﻻ يوجد ملخص باللغة العربية
We investigate the system size dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.
We study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained by confocal microscopy and the
We present contactless atomic-force microscopy measurements of the hydrodynamic interactions between a rigid sphere and an air bubble in water at the micro-scale. The size of the bubble is found to have a significant effect on the response due to the
We suggest a simple model for reversible cross-links, binding and unbinding to/from a network of semiflexible polymers. The resulting frequency dependent response of the network to an applied shear is calculated via Brownian dynamics simulations. It
This article deals with the Hadamard instability of the so-called $mu(I)$ model of dense rapidly-sheared granular flow, as reported recently by Barker et al. (2015,this journal, ${bf 779}$, 794-818). The present paper presents a more comprehensive st
Observations of flowing granular matter have suggested that same-material tribocharging de- pends on particle size, rendering large grains positive and small ones negative. Models assuming the transfer of trapped electrons can explain this, but so fa